Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

DEMIS: Electron Microscopy Image Stitching using Deep Learning Features and Global Optimisation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F25%3APU155128" target="_blank" >RIV/00216305:26230/25:PU155128 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scitepress.org/publishedPapers/2025/133149/pdf/index.html" target="_blank" >https://www.scitepress.org/publishedPapers/2025/133149/pdf/index.html</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    DEMIS: Electron Microscopy Image Stitching using Deep Learning Features and Global Optimisation

  • Popis výsledku v původním jazyce

    Accurate stitching of overlapping image tiles is essential for reconstructing large-scale Electron Microscopy (EM) images during Whole Slide Imaging. Current stitching approaches rely on handcrafted features and translation-only global alignment based on Minimum Spanning Tree (MST) construction. This results in suboptimal global alignment since it neglects rotational errors and works only with transformations estimated from pairwise feature matches, discarding valuable information tied to individual features. Moreover, handcrafted features may have trouble with repetitive textures. Motivated by the limitations of current methods and recent advancements in deep learning, we propose DEMIS, a novel EM image stitching method. DEMIS uses Local Feature TRansformer (LoFTR) for image matching, and optimises translational and rotational parameters directly at the level of individual features. For evaluation and training, we create EM424, a synthetic dataset generated by splitting high-resolution EM

  • Název v anglickém jazyce

    DEMIS: Electron Microscopy Image Stitching using Deep Learning Features and Global Optimisation

  • Popis výsledku anglicky

    Accurate stitching of overlapping image tiles is essential for reconstructing large-scale Electron Microscopy (EM) images during Whole Slide Imaging. Current stitching approaches rely on handcrafted features and translation-only global alignment based on Minimum Spanning Tree (MST) construction. This results in suboptimal global alignment since it neglects rotational errors and works only with transformations estimated from pairwise feature matches, discarding valuable information tied to individual features. Moreover, handcrafted features may have trouble with repetitive textures. Motivated by the limitations of current methods and recent advancements in deep learning, we propose DEMIS, a novel EM image stitching method. DEMIS uses Local Feature TRansformer (LoFTR) for image matching, and optimises translational and rotational parameters directly at the level of individual features. For evaluation and training, we create EM424, a synthetic dataset generated by splitting high-resolution EM

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2025

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů