Atmospheric Pressure Microwave Plasma Torch for Biomedical Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F18%3APU135440" target="_blank" >RIV/00216305:26310/18:PU135440 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.dl.begellhouse.com/download/article/3f843a5958e1cc77/(7)PMED-28816.pdf" target="_blank" >http://www.dl.begellhouse.com/download/article/3f843a5958e1cc77/(7)PMED-28816.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1615/PlasmaMed.2019028816" target="_blank" >10.1615/PlasmaMed.2019028816</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Atmospheric Pressure Microwave Plasma Torch for Biomedical Applications
Popis výsledku v původním jazyce
During the past decade, cold plasma sources have gained much attention regarding biomedical applications. The large spectrum of observed effects (programmed cell death, bacterial inactivation, wound healing, etc.) has encouraged scientists to create and use different plasma sources operating at atmospheric pressure. The preferred plasma device to this point has been dielectric barrier discharges. In this work, we present well-known surface-wave–sustained microwave discharge operating at 2.45 GHz. This atmospheric pressure plasma torch can sustain low gas temperature at relatively low gas flow and power output, which makes it suitable for working with different model biological systems. We see a strong relationship among microwave power, torch length and gas temperature. Moreover, gas flow and tube specifications (inner diameter, wall thickness, and dielectric permittivity) vary temperature and length of discharge. The purpose of this work is to precisely determine the working conditions at which this plasma source can be used in direct contact with biological objects.
Název v anglickém jazyce
Atmospheric Pressure Microwave Plasma Torch for Biomedical Applications
Popis výsledku anglicky
During the past decade, cold plasma sources have gained much attention regarding biomedical applications. The large spectrum of observed effects (programmed cell death, bacterial inactivation, wound healing, etc.) has encouraged scientists to create and use different plasma sources operating at atmospheric pressure. The preferred plasma device to this point has been dielectric barrier discharges. In this work, we present well-known surface-wave–sustained microwave discharge operating at 2.45 GHz. This atmospheric pressure plasma torch can sustain low gas temperature at relatively low gas flow and power output, which makes it suitable for working with different model biological systems. We see a strong relationship among microwave power, torch length and gas temperature. Moreover, gas flow and tube specifications (inner diameter, wall thickness, and dielectric permittivity) vary temperature and length of discharge. The purpose of this work is to precisely determine the working conditions at which this plasma source can be used in direct contact with biological objects.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LD14014" target="_blank" >LD14014: Plazmové jety založené na elektrických výbojích v kapalinách v konfiguraci pin-hole</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plasma Medicine
ISSN
1947-5764
e-ISSN
1947-5772
Svazek periodika
8
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
403-409
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—