Time-temperature resistance of transverse stressed lap joints of glued spruce and thermal analysis of adhesives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F21%3APU139499" target="_blank" >RIV/00216305:26310/21:PU139499 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=C2vrRbgg3tmwZ5bRvar&page=1&doc=1" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=4&SID=C2vrRbgg3tmwZ5bRvar&page=1&doc=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijadhadh.2020.102760" target="_blank" >10.1016/j.ijadhadh.2020.102760</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-temperature resistance of transverse stressed lap joints of glued spruce and thermal analysis of adhesives
Popis výsledku v původním jazyce
Lap joints were prepared by gluing spruce plates with three types of adhesives (phenol-resorcinol-formaldehyde, PRF; one-component polyurethane, PUR; and epoxy, EP). The joints were exposed to 140 degrees C and 170 degrees C for 24 h (20, 40, 60, 80, 180 and 1140 min) and then loaded in four-point bending to verify the behavior of glued lap joints in building structures exposed to fire in its initial stage and stressed in transverse direction. The lap joint strength was compared to that of spruce specimens exposed to the same conditions and of the same stressed area. The failure mode of lap joints was evaluated visually; the failure mode was caused by exceeding the transverse load capacity of bulk wood. The strength of spruce fell by 40% after exposure to both temperatures for 20 min and next decrease began after 80-min exposure at 170 degrees C as a result of the beginning of hemicellulose decom-position. Only PUR improved the spruce strength at 20 degrees C (by 30%) and at both temperatures except that after exposure to 170 degrees C for long time (3 and 24 h). The PUR-spruce lap joints revealed very good fire resistance for the initial fire exposure (80 min at 140 degrees C and 40 min at 170 degrees C). The strength of both PRF and EP lap joints was the same as that of spruce at 20 degrees C but PRF improved the spruce strength at 140 degrees C after 20-min exposure (by 45%) and at 170 degrees C, where PRF lap joints bore the load irrespective of wood degradation. The EP lap joints revealed the worse thermal resistance due to the rubber state of incompletely post-cured and degraded EP. To evaluate an adhesive structure and its prospective change after thermal exposure and to evaluate the influence of an adhesive thickness, the adhesives were cured in a form of bulk and thin films and tested by Thermogravimetry (TGA), Differential Scanning Calorimetry, Fourier Transformed Infrared Spectroscopy (FTIR) and evolved gas analysis (EVA) using TGA-FTIR. Curing and post-c
Název v anglickém jazyce
Time-temperature resistance of transverse stressed lap joints of glued spruce and thermal analysis of adhesives
Popis výsledku anglicky
Lap joints were prepared by gluing spruce plates with three types of adhesives (phenol-resorcinol-formaldehyde, PRF; one-component polyurethane, PUR; and epoxy, EP). The joints were exposed to 140 degrees C and 170 degrees C for 24 h (20, 40, 60, 80, 180 and 1140 min) and then loaded in four-point bending to verify the behavior of glued lap joints in building structures exposed to fire in its initial stage and stressed in transverse direction. The lap joint strength was compared to that of spruce specimens exposed to the same conditions and of the same stressed area. The failure mode of lap joints was evaluated visually; the failure mode was caused by exceeding the transverse load capacity of bulk wood. The strength of spruce fell by 40% after exposure to both temperatures for 20 min and next decrease began after 80-min exposure at 170 degrees C as a result of the beginning of hemicellulose decom-position. Only PUR improved the spruce strength at 20 degrees C (by 30%) and at both temperatures except that after exposure to 170 degrees C for long time (3 and 24 h). The PUR-spruce lap joints revealed very good fire resistance for the initial fire exposure (80 min at 140 degrees C and 40 min at 170 degrees C). The strength of both PRF and EP lap joints was the same as that of spruce at 20 degrees C but PRF improved the spruce strength at 140 degrees C after 20-min exposure (by 45%) and at 170 degrees C, where PRF lap joints bore the load irrespective of wood degradation. The EP lap joints revealed the worse thermal resistance due to the rubber state of incompletely post-cured and degraded EP. To evaluate an adhesive structure and its prospective change after thermal exposure and to evaluate the influence of an adhesive thickness, the adhesives were cured in a form of bulk and thin films and tested by Thermogravimetry (TGA), Differential Scanning Calorimetry, Fourier Transformed Infrared Spectroscopy (FTIR) and evolved gas analysis (EVA) using TGA-FTIR. Curing and post-c
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Adhesion and Adhesives
ISSN
0143-7496
e-ISSN
1879-0127
Svazek periodika
104
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000589893900003
EID výsledku v databázi Scopus
—