New approach strategy for heavy metals immobilization and microbiome structure long-term industrially contaminated soils
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26310%2F22%3APU146614" target="_blank" >RIV/00216305:26310/22:PU146614 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/22:43921947
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0045653522028259" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045653522028259</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chemosphere.2022.136332" target="_blank" >10.1016/j.chemosphere.2022.136332</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New approach strategy for heavy metals immobilization and microbiome structure long-term industrially contaminated soils
Popis výsledku v původním jazyce
The progress of engineering technologies highly influences the development of methods that lead to the condition improvement of areas contaminated with heavy metals (HMs). The aided phytostabilization fits into this trend, and was used to evaluate HM-immobilization effectiveness in phytostabilized soils under variable temperatures by applying 16 freezing-thawing cycles (FTC). Diatomite amendment and Lolium perenne L., also were applied. Cd/Ni/Cu/Pb/Zn each total content in phytostabilized soils were determined, along with the verification for each metal of its distribution in four extracted fractions (F1 divided by F4) from soils. Based on changes in HM distribution, each metal's stability was estimated. Moreover, HM accumulation in plant roots and stems and soil microbial composition were investigated. Independently of the experimental variant (no-FTC-exposure or FTCexposure), the above-ground biomass yields in the diatomite-amended series were higher as compared to the corresponding control series. The evident changes in Pb/Zn-bioavailability were observed. The metal stability increase was mainly attributed to metal concentration decreasing in the F1 fraction and increasing in the F4 fraction, respectively. Diatomite increased Cd/Zn-stability in not-FTC-exposed-phytostabilized soils. FTCexposure favorably influenced Pb/Zn stability. Diatomite increased soil pH values and Cd/Ni/Cu/Znbioaccumulation (except Pb) in roots than in stems (in both experimental variants). FTC-exposure influenced soil microbial composition, increasing bacteria abundance belonging to Actinobacteria, Gammaproteobacteria, and Sphingobacteria. At the genus level, FTC exposure significantly increased the abundances of Limnobacter sp., Tetrasphaera sp., Flavobacterium sp., and Dyella sp. Independently of the experimental variant, Sphingomonas sp. and Mycobacterium sp., which have a tolerance to HM contamination, were core bacterial groups, comprising about 6 - 7% of all soil bacteria.
Název v anglickém jazyce
New approach strategy for heavy metals immobilization and microbiome structure long-term industrially contaminated soils
Popis výsledku anglicky
The progress of engineering technologies highly influences the development of methods that lead to the condition improvement of areas contaminated with heavy metals (HMs). The aided phytostabilization fits into this trend, and was used to evaluate HM-immobilization effectiveness in phytostabilized soils under variable temperatures by applying 16 freezing-thawing cycles (FTC). Diatomite amendment and Lolium perenne L., also were applied. Cd/Ni/Cu/Pb/Zn each total content in phytostabilized soils were determined, along with the verification for each metal of its distribution in four extracted fractions (F1 divided by F4) from soils. Based on changes in HM distribution, each metal's stability was estimated. Moreover, HM accumulation in plant roots and stems and soil microbial composition were investigated. Independently of the experimental variant (no-FTC-exposure or FTCexposure), the above-ground biomass yields in the diatomite-amended series were higher as compared to the corresponding control series. The evident changes in Pb/Zn-bioavailability were observed. The metal stability increase was mainly attributed to metal concentration decreasing in the F1 fraction and increasing in the F4 fraction, respectively. Diatomite increased Cd/Zn-stability in not-FTC-exposed-phytostabilized soils. FTCexposure favorably influenced Pb/Zn stability. Diatomite increased soil pH values and Cd/Ni/Cu/Znbioaccumulation (except Pb) in roots than in stems (in both experimental variants). FTC-exposure influenced soil microbial composition, increasing bacteria abundance belonging to Actinobacteria, Gammaproteobacteria, and Sphingobacteria. At the genus level, FTC exposure significantly increased the abundances of Limnobacter sp., Tetrasphaera sp., Flavobacterium sp., and Dyella sp. Independently of the experimental variant, Sphingomonas sp. and Mycobacterium sp., which have a tolerance to HM contamination, were core bacterial groups, comprising about 6 - 7% of all soil bacteria.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CHEMOSPHERE
ISSN
0045-6535
e-ISSN
1879-1298
Svazek periodika
308(2)
Číslo periodika v rámci svazku
136332
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
000864035700003
EID výsledku v databázi Scopus
2-s2.0-85138117560