LANDFILLS MULTIPLE GOAL OPTIMIZATION USING EQUATIONLESS QUALITATIVE RELATIONS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F14%3APU108222" target="_blank" >RIV/00216305:26510/14:PU108222 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3844/ajessp.2014.26.34" target="_blank" >http://dx.doi.org/10.3844/ajessp.2014.26.34</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3844/ajessp.2014.26.34" target="_blank" >10.3844/ajessp.2014.26.34</a>
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
LANDFILLS MULTIPLE GOAL OPTIMIZATION USING EQUATIONLESS QUALITATIVE RELATIONS
Popis výsledku v původním jazyce
Landfills are unique and difficult to measure. Their optimization must be solved with a severe lack of information. The privilege of not utilizing information items based on common sense cannot be afforded, as this represents an important part of the available ad hoc landfill knowledge related to e.g., economics, sociology. Therefore, a flexible, formal tool for dealing with the common sense knowledge and data of a non-numerical nature is required. The classical quantitative tools, e.g., statistics, are inefficient for dealing with such sets of non-quantitative information items as interviews. Qualitative quantification is information non-intensive. It is based on just three values-positive, zero and negative; increasing, constant and decreasing. A qualitative model can be used to generate all possible qualitative activities/scenarios. It means that the past history and future scenarios of the landfill under study are known, given the model is correct. The scenarios can be screened against the prescribed trends (maximization or minimization) of objective functions, to identify all possible ways of achieving optimal results. A case study with four mutually competing objective functions is presented in details. No prior knowledge of qualitative reasoning is required.
Název v anglickém jazyce
LANDFILLS MULTIPLE GOAL OPTIMIZATION USING EQUATIONLESS QUALITATIVE RELATIONS
Popis výsledku anglicky
Landfills are unique and difficult to measure. Their optimization must be solved with a severe lack of information. The privilege of not utilizing information items based on common sense cannot be afforded, as this represents an important part of the available ad hoc landfill knowledge related to e.g., economics, sociology. Therefore, a flexible, formal tool for dealing with the common sense knowledge and data of a non-numerical nature is required. The classical quantitative tools, e.g., statistics, are inefficient for dealing with such sets of non-quantitative information items as interviews. Qualitative quantification is information non-intensive. It is based on just three values-positive, zero and negative; increasing, constant and decreasing. A qualitative model can be used to generate all possible qualitative activities/scenarios. It means that the past history and future scenarios of the landfill under study are known, given the model is correct. The scenarios can be screened against the prescribed trends (maximization or minimization) of objective functions, to identify all possible ways of achieving optimal results. A case study with four mutually competing objective functions is presented in details. No prior knowledge of qualitative reasoning is required.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50602 - Public administration
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
American Journal of Environmental Sciences
ISSN
1553-345X
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
26-34
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84897105331