Hybrid approach Wavelet seasonal autoregressive integrated moving averagemodel (WSARIMA) for modeling time series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F21%3APU140167" target="_blank" >RIV/00216305:26510/21:PU140167 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/pdf/10.1063/5.0041734" target="_blank" >https://aip.scitation.org/doi/pdf/10.1063/5.0041734</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0041734" target="_blank" >10.1063/5.0041734</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid approach Wavelet seasonal autoregressive integrated moving averagemodel (WSARIMA) for modeling time series
Popis výsledku v původním jazyce
Many prognosis studies have been conducted for a long time. There are many established and widely accepted prediction methods, such as linear extrapolation and SARIMA. However, their performance is far from perfect, especially when the time series is highly volatile. In this paper, we propose a hybrid prediction scheme that combines the classical SARIMA method and the wavelet transform (WT). Wavelet transform (WT) has emerged as an effective tool in decomposing time series into different components, which allows for improved prediction accuracy. However, this issue has so far been insufficiently tested and tried to predict different time series. Our goal is therefore to integrate modeling approaches as a decision support tool. The results of an empirical study show that this method can achieve high accuracy in prediction. Based on the results of the created model, it can be stated that the hybrid WSARIMA model overperformed the SARIMA model.
Název v anglickém jazyce
Hybrid approach Wavelet seasonal autoregressive integrated moving averagemodel (WSARIMA) for modeling time series
Popis výsledku anglicky
Many prognosis studies have been conducted for a long time. There are many established and widely accepted prediction methods, such as linear extrapolation and SARIMA. However, their performance is far from perfect, especially when the time series is highly volatile. In this paper, we propose a hybrid prediction scheme that combines the classical SARIMA method and the wavelet transform (WT). Wavelet transform (WT) has emerged as an effective tool in decomposing time series into different components, which allows for improved prediction accuracy. However, this issue has so far been insufficiently tested and tried to predict different time series. Our goal is therefore to integrate modeling approaches as a decision support tool. The results of an empirical study show that this method can achieve high accuracy in prediction. Based on the results of the created model, it can be stated that the hybrid WSARIMA model overperformed the SARIMA model.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-0-7354-4077-7
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
„090001-1“-„090001-10“
Název nakladatele
AIP Publishing
Místo vydání
neuveden
Místo konání akce
Sofia
Datum konání akce
7. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000664205600026