Expertní systém pro rozhodování na akciových trzích s využitím sentimentu investorů
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F21%3APU142113" target="_blank" >RIV/00216305:26510/21:PU142113 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Expertní systém pro rozhodování na akciových trzích s využitím sentimentu investorů
Popis výsledku v původním jazyce
Předložená disertační práce zkoumá potenciál využití skóre sentimentu extrahovaného z textových dat společně s historickými daty o akciovém indexu ke zlepšení výkonnosti predikce na akciovém trhu prostřednictvím vytvořeného modelu expertního systému. Vzhledem k tomu, že velké množství textových dokumentů souvisejících s financemi, které zveřejňují jak profesionální, tak amatérští investoři, nejen na online sociálních sítích, by mohly mít dopad na vývoj akciových trhů, je zásadním úkolem analyzovat finanční texty zveřejněné různými uživateli a zejména z nich extrahovat sentiment. V této práci je sentiment investorů získán z online finančních zpráv a příspěvků zveřejněných na finanční sociální platformě StockTwits. Skóre sentimentu je stanoveno pomocí hybridního přístupu kombinující modely strojového učení s učitelem a neuronových sítí, přičemž ke klasifikaci polarity sentimentu je využito vícero lexikonů pozitivních a negativních slov. Je analyzován vliv skóre sentimentu na akciový trh prostřednictvím
Název v anglickém jazyce
Expert System for Decision-Making on Stock Markets Using Investor Sentiment
Popis výsledku anglicky
The presented dissertation examines the potential of using the sentiment score extracted from textual data with historical stock index data to improve the performance of stock market prediction through the created model of the expert system. Given the large number of financial-related text documents published by both professional and amateur investors, not only on online social networks that could have an impact on real stock markets, but it is also crucial to analyze and in particular extract financial texts published by different users. investor sentiment. In this work, investor sentiment is obtained from online financial reports and contributions published on the financial social platform StockTwits. Sentiment scores are determined using a hybrid approach combining machine learning models with the teacher and neural networks, with multiple lexicons of positive and negative words used to classify sentiment polarity. The influence of sentiment score on the stock market through causality, cointegratio
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů