Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Expertní systém pro rozhodování na akciových trzích s využitím sentimentu investorů

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F21%3APU142113" target="_blank" >RIV/00216305:26510/21:PU142113 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    čeština

  • Název v původním jazyce

    Expertní systém pro rozhodování na akciových trzích s využitím sentimentu investorů

  • Popis výsledku v původním jazyce

    Předložená disertační práce zkoumá potenciál využití skóre sentimentu extrahovaného z textových dat společně s historickými daty o akciovém indexu ke zlepšení výkonnosti predikce na akciovém trhu prostřednictvím vytvořeného modelu expertního systému. Vzhledem k tomu, že velké množství textových dokumentů souvisejících s financemi, které zveřejňují jak profesionální, tak amatérští investoři, nejen na online sociálních sítích, by mohly mít dopad na vývoj akciových trhů, je zásadním úkolem analyzovat finanční texty zveřejněné různými uživateli a zejména z nich extrahovat sentiment. V této práci je sentiment investorů získán z online finančních zpráv a příspěvků zveřejněných na finanční sociální platformě StockTwits. Skóre sentimentu je stanoveno pomocí hybridního přístupu kombinující modely strojového učení s učitelem a neuronových sítí, přičemž ke klasifikaci polarity sentimentu je využito vícero lexikonů pozitivních a negativních slov. Je analyzován vliv skóre sentimentu na akciový trh prostřednictvím

  • Název v anglickém jazyce

    Expert System for Decision-Making on Stock Markets Using Investor Sentiment

  • Popis výsledku anglicky

    The presented dissertation examines the potential of using the sentiment score extracted from textual data with historical stock index data to improve the performance of stock market prediction through the created model of the expert system. Given the large number of financial-related text documents published by both professional and amateur investors, not only on online social networks that could have an impact on real stock markets, but it is also crucial to analyze and in particular extract financial texts published by different users. investor sentiment. In this work, investor sentiment is obtained from online financial reports and contributions published on the financial social platform StockTwits. Sentiment scores are determined using a hybrid approach combining machine learning models with the teacher and neural networks, with multiple lexicons of positive and negative words used to classify sentiment polarity. The influence of sentiment score on the stock market through causality, cointegratio

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů