Evaluation Of The Degree Of Uncertainty In The Type-2 Fuzzy Logic System For Forecasting Stock Index
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26510%2F22%3APU146749" target="_blank" >RIV/00216305:26510/22:PU146749 - isvavai.cz</a>
Výsledek na webu
<a href="https://ipe.ro/rjef.htm" target="_blank" >https://ipe.ro/rjef.htm</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation Of The Degree Of Uncertainty In The Type-2 Fuzzy Logic System For Forecasting Stock Index
Popis výsledku v původním jazyce
The paper deals with investment analysis based on a new fuzzy methodology. Specifically, the interval type-2 fuzzy logic model is created to support decision-making for investors, financial analysts and brokers. The model is demonstrated on the time series of the leading stock index S&P 500 of the US market. Type-2 fuzzy logic membership features are able to include additional uncertainty resulting from unclear, uncertain or inaccurate financial data that are selected as inputs to the model.The paper deals mainly with the evaluation and comparison of different degrees of uncertainty of the functions of the membership of input variables. Several model situations with different levels of inaccuracy are created. Based on the results of the comparison, it can be said that the type-2 fuzzy logic with dual membership functions is able to better describe data from financial time series.
Název v anglickém jazyce
Evaluation Of The Degree Of Uncertainty In The Type-2 Fuzzy Logic System For Forecasting Stock Index
Popis výsledku anglicky
The paper deals with investment analysis based on a new fuzzy methodology. Specifically, the interval type-2 fuzzy logic model is created to support decision-making for investors, financial analysts and brokers. The model is demonstrated on the time series of the leading stock index S&P 500 of the US market. Type-2 fuzzy logic membership features are able to include additional uncertainty resulting from unclear, uncertain or inaccurate financial data that are selected as inputs to the model.The paper deals mainly with the evaluation and comparison of different degrees of uncertainty of the functions of the membership of input variables. Several model situations with different levels of inaccuracy are created. Based on the results of the comparison, it can be said that the type-2 fuzzy logic with dual membership functions is able to better describe data from financial time series.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Romanian Journal of Economic Forecasting
ISSN
1582-6163
e-ISSN
2537-6071
Svazek periodika
25
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
17
Strana od-do
41-57
Kód UT WoS článku
000920228000003
EID výsledku v databázi Scopus
2-s2.0-85146382154