Microstructural Characterization of Thermally Grown Oxide in Atmospheric Plasma Sprayed Thermal Barier Coatings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F13%3APU108478" target="_blank" >RIV/00216305:26620/13:PU108478 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microstructural Characterization of Thermally Grown Oxide in Atmospheric Plasma Sprayed Thermal Barier Coatings
Popis výsledku v původním jazyce
Thermal barrier coating system is usually composed of nickel or cobalt based superalloy, metallic bond coat (M-CrAlY, where M means Ni, Co or their appropriate combination) and ceramic top coat (ZrO2+6-8%Y2O3) [1]. As the bond coats are primarily appliedto protect the underlying metallic substrate against the oxidizing and hot-corrosive environment, the principal function of TBC, as its name suggests, is to reduce the metallic substrate temperature and thereby either increase the service life of the component or allow for higher combustion temperatures, which translates into increased aerospace engines efficiency. Together with active air cooling, TBCs can lower the substrate temperatures by more than 300oC, with the ceramic insulating coating alone credited with reducing the metal temperature by as much as 165oC [2,3]. The metallic bond coat serves as an oxidation resistant layer and protects the substrate against harsh working conditions. The bond coat also compensates the differenc
Název v anglickém jazyce
Microstructural Characterization of Thermally Grown Oxide in Atmospheric Plasma Sprayed Thermal Barier Coatings
Popis výsledku anglicky
Thermal barrier coating system is usually composed of nickel or cobalt based superalloy, metallic bond coat (M-CrAlY, where M means Ni, Co or their appropriate combination) and ceramic top coat (ZrO2+6-8%Y2O3) [1]. As the bond coats are primarily appliedto protect the underlying metallic substrate against the oxidizing and hot-corrosive environment, the principal function of TBC, as its name suggests, is to reduce the metallic substrate temperature and thereby either increase the service life of the component or allow for higher combustion temperatures, which translates into increased aerospace engines efficiency. Together with active air cooling, TBCs can lower the substrate temperatures by more than 300oC, with the ceramic insulating coating alone credited with reducing the metal temperature by as much as 165oC [2,3]. The metallic bond coat serves as an oxidation resistant layer and protects the substrate against harsh working conditions. The bond coat also compensates the differenc
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JK - Koroze a povrchové úpravy materiálu
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů