Multi-scale modeling of damage development in a thermal barrier coating
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F15%3APU114430" target="_blank" >RIV/00216305:26620/15:PU114430 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.surfcoat.2015.06.038" target="_blank" >http://dx.doi.org/10.1016/j.surfcoat.2015.06.038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2015.06.038" target="_blank" >10.1016/j.surfcoat.2015.06.038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-scale modeling of damage development in a thermal barrier coating
Popis výsledku v původním jazyce
A multi-scale Finite Element Microstructure MEshfree (FEMME) fracture model for quasi-brittle materials with complex microstructures is applied to simulate thermo-mechanical damage in a plasma-sprayed thermal barrier coating system. This novel multi-scale technique for damage simulation allows the influence of the microstruc- ture of the yttria-stabilized zirconia top coat and the geometry of the bond coat and the thermally grown oxide layer to be considered with computational efficiency. Mechanical damage, due to the thermal strain of an applied temperature difference, is predicted to decrease the top coat Young's modulus. The interaction between the evolution of damage and temperatures within the top coat is also simulated, demonstrating the capability of this methodology to address coupled multi-scale problems.
Název v anglickém jazyce
Multi-scale modeling of damage development in a thermal barrier coating
Popis výsledku anglicky
A multi-scale Finite Element Microstructure MEshfree (FEMME) fracture model for quasi-brittle materials with complex microstructures is applied to simulate thermo-mechanical damage in a plasma-sprayed thermal barrier coating system. This novel multi-scale technique for damage simulation allows the influence of the microstruc- ture of the yttria-stabilized zirconia top coat and the geometry of the bond coat and the thermally grown oxide layer to be considered with computational efficiency. Mechanical damage, due to the thermal strain of an applied temperature difference, is predicted to decrease the top coat Young's modulus. The interaction between the evolution of damage and temperatures within the top coat is also simulated, demonstrating the capability of this methodology to address coupled multi-scale problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20306 - Audio engineering, reliability analysis
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0068" target="_blank" >ED1.1.00/02.0068: CEITEC - central european institute of technology</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Svazek periodika
276
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
399-407
Kód UT WoS článku
000360594600050
EID výsledku v databázi Scopus
2-s2.0-84939257687