Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spark plasma sintering of load-bearing iron-carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU116865" target="_blank" >RIV/00216305:26620/16:PU116865 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://link.springer.com/article/10.1007/s11837-015-1806-9" target="_blank" >http://link.springer.com/article/10.1007/s11837-015-1806-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11837-015-1806-9" target="_blank" >10.1007/s11837-015-1806-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spark plasma sintering of load-bearing iron-carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications

  • Popis výsledku v původním jazyce

    Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. Process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron and consolidation through spark plasma sintering (SPS) method. The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, X-ray diffraction and diametral tensile strength test, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although that short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion test shows that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

  • Název v anglickém jazyce

    Spark plasma sintering of load-bearing iron-carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications

  • Popis výsledku anglicky

    Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. Process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron and consolidation through spark plasma sintering (SPS) method. The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, X-ray diffraction and diametral tensile strength test, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although that short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion test shows that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOM

  • ISSN

    1047-4838

  • e-ISSN

    1543-1851

  • Svazek periodika

    68

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    1134-1142

  • Kód UT WoS článku

    000373131200012

  • EID výsledku v databázi Scopus

    2-s2.0-84954193156