Spark plasma sintering of load-bearing iron-carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU116865" target="_blank" >RIV/00216305:26620/16:PU116865 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s11837-015-1806-9" target="_blank" >http://link.springer.com/article/10.1007/s11837-015-1806-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11837-015-1806-9" target="_blank" >10.1007/s11837-015-1806-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spark plasma sintering of load-bearing iron-carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications
Popis výsledku v původním jazyce
Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. Process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron and consolidation through spark plasma sintering (SPS) method. The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, X-ray diffraction and diametral tensile strength test, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although that short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion test shows that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.
Název v anglickém jazyce
Spark plasma sintering of load-bearing iron-carbon nanotube-tricalcium phosphate CerMets for orthopaedic applications
Popis výsledku anglicky
Recently, ceramic-metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. Process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron and consolidation through spark plasma sintering (SPS) method. The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, X-ray diffraction and diametral tensile strength test, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although that short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion test shows that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOM
ISSN
1047-4838
e-ISSN
1543-1851
Svazek periodika
68
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1134-1142
Kód UT WoS článku
000373131200012
EID výsledku v databázi Scopus
2-s2.0-84954193156