Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with an irregular top-coat/bond-coat interface
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU119905" target="_blank" >RIV/00216305:26620/16:PU119905 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0257897216306697" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0257897216306697</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2016.07.066" target="_blank" >10.1016/j.surfcoat.2016.07.066</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with an irregular top-coat/bond-coat interface
Popis výsledku v původním jazyce
A three-dimensional finite element model of a conventional plasma-sprayed thermal barrier coating was set up with an irregular top-coat/bond-coat interface that was modelled based on the waviness data of a plasma-sprayed coating surface. The residual stresses upon cooling from a high-temperature stress-free state down to a room-temperature stressed state were studied as a function of thickness of the thermally grown oxide (TGO) layer taking into account the plasticity of the bond coat. The calculations indicate that the delamination cracks at the TGO/bond-coat are more likely to appear with progressive oxidation, and, conversely, the initiation of cracks in the top coat at the interfacial peaks in an intact thermal barrier coating is less probable because the tensile stresses in the top coat initially decrease and the tensile regions gradually become smaller and localized due to the observed stress conversion.Based on the obtained results and experimental evidence from the literature, a role of the interfacial topography in the failure sequence is discussed for oxidized and thermally-cycled coatings.
Název v anglickém jazyce
Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with an irregular top-coat/bond-coat interface
Popis výsledku anglicky
A three-dimensional finite element model of a conventional plasma-sprayed thermal barrier coating was set up with an irregular top-coat/bond-coat interface that was modelled based on the waviness data of a plasma-sprayed coating surface. The residual stresses upon cooling from a high-temperature stress-free state down to a room-temperature stressed state were studied as a function of thickness of the thermally grown oxide (TGO) layer taking into account the plasticity of the bond coat. The calculations indicate that the delamination cracks at the TGO/bond-coat are more likely to appear with progressive oxidation, and, conversely, the initiation of cracks in the top coat at the interfacial peaks in an intact thermal barrier coating is less probable because the tensile stresses in the top coat initially decrease and the tensile regions gradually become smaller and localized due to the observed stress conversion.Based on the obtained results and experimental evidence from the literature, a role of the interfacial topography in the failure sequence is discussed for oxidized and thermally-cycled coatings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Svazek periodika
304
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
574-583
Kód UT WoS článku
000384775900066
EID výsledku v databázi Scopus
2-s2.0-84979729432