Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reconstruction of a 2D stress field around the tip of a sharp material inclusion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU120849" target="_blank" >RIV/00216305:26620/16:PU120849 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.prostr.2016.06.241" target="_blank" >http://dx.doi.org/10.1016/j.prostr.2016.06.241</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.prostr.2016.06.241" target="_blank" >10.1016/j.prostr.2016.06.241</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reconstruction of a 2D stress field around the tip of a sharp material inclusion

  • Popis výsledku v původním jazyce

    The stress distribution in the vicinity of a sharp material inclusion (SMI) tip exhibits a singular stress behavior. The strength of the stress singularity depends on material properties and geometry. The SMI is a special case of a general singular stress concentrator (GSSC). The stress field near a GSSC can be analytically described by means of Muskhelishvili plane elasticity based on complex variable function methods. Parameters necessary for the description are the exponents of singularity and generalized stress intensity factors (GSIFs). The stress field in the closest vicinity of an SMI tip is thus characterized by 1 or 2 singular exponents (λ-1), for which 0<Re(λ)<1, and corresponding GSIFs. In order to describe a stress field further away from an SMI tip, the non-singular exponents, 1<Re(λ), and factors corresponding to these non-singular exponents have to be taken into account. For given boundary conditions of the SMI, the exponents are calculated as an eigenvalue problem. Then, by formation of corresponding eigenvectors, the stress or displacement angular functions for each stress or displacement series term are constructed. The contribution of each stress or displacement series term function to the total stress and displacement field is given by the corresponding GSIF. The GSIFs are calculated by the over deterministic method (ODM), which finds a solution of an over-determined system of linear equations by the least squares method. On the left-hand side of the system are the displacement series term functions multiplied by unknown GSIFs, while the right-hand is formed by results of finite element analysis (FEA). Thus the results of FEA, namely nodal displacements in the radial and tangential direction, are employed in order to obtain the GSIFs. In the numerical example, the stress field for particular bi-material configurations and geometries is reconstructed using i) singular terms only ii) singular and non-singular terms. The reconstructed stress field p

  • Název v anglickém jazyce

    Reconstruction of a 2D stress field around the tip of a sharp material inclusion

  • Popis výsledku anglicky

    The stress distribution in the vicinity of a sharp material inclusion (SMI) tip exhibits a singular stress behavior. The strength of the stress singularity depends on material properties and geometry. The SMI is a special case of a general singular stress concentrator (GSSC). The stress field near a GSSC can be analytically described by means of Muskhelishvili plane elasticity based on complex variable function methods. Parameters necessary for the description are the exponents of singularity and generalized stress intensity factors (GSIFs). The stress field in the closest vicinity of an SMI tip is thus characterized by 1 or 2 singular exponents (λ-1), for which 0<Re(λ)<1, and corresponding GSIFs. In order to describe a stress field further away from an SMI tip, the non-singular exponents, 1<Re(λ), and factors corresponding to these non-singular exponents have to be taken into account. For given boundary conditions of the SMI, the exponents are calculated as an eigenvalue problem. Then, by formation of corresponding eigenvectors, the stress or displacement angular functions for each stress or displacement series term are constructed. The contribution of each stress or displacement series term function to the total stress and displacement field is given by the corresponding GSIF. The GSIFs are calculated by the over deterministic method (ODM), which finds a solution of an over-determined system of linear equations by the least squares method. On the left-hand side of the system are the displacement series term functions multiplied by unknown GSIFs, while the right-hand is formed by results of finite element analysis (FEA). Thus the results of FEA, namely nodal displacements in the radial and tangential direction, are employed in order to obtain the GSIFs. In the numerical example, the stress field for particular bi-material configurations and geometries is reconstructed using i) singular terms only ii) singular and non-singular terms. The reconstructed stress field p

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    20306 - Audio engineering, reliability analysis

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Procedia Structural Integrity

  • ISSN

    2452-3216

  • e-ISSN

  • Svazek periodika

    1

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    IT - Italská republika

  • Počet stran výsledku

    8

  • Strana od-do

    1920-1927

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84990208524