Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Application of LIBS: Elemental mapping

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F16%3APU140086" target="_blank" >RIV/00216305:26620/16:PU140086 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/16:00093788

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Application of LIBS: Elemental mapping

  • Popis výsledku v původním jazyce

    Scan analysis by Laser-Induced Breakdown Spectroscopy (LIBS) is usually performed as sampling in the series of single points (ablation craters), in one, two, or even three directions. The spatial (lateral and depth) resolution is then determined by the size, depth and spacing of the ablation craters. Tightly focused short wavelength laser pulses enable production of both small in diameter and depth ablation craters. However, for the smallest LIBS ablation craters, the emission intensities mainly in single-pulse configuration are usually low, and not sufficient especially for minor and trace elements detection. Double-pulsed LIBS techniques may significantly enhance the signal even if a small amount of material per pulse is ablated. Therefore, double-pulse LIBS instrumentation equipped with UV ablation lasers and IR lasers in reheating mode seem to be suitable for achieving low detection limits with high spatial-resolution. LIBS ablation chambers enable further improvement of figures of merit using the atmosphere of noble gases [1]. Because of the fact that it represents a relatively simple way for fast chemical analysis (even in situ), LIBS has several interesting applications, including e.g., compositional mapping of geological samples. The LIBS potential for discrimination of geological materials using principal component analysis (PCA) was recently examined [2]. Such approach can also be applied in stand-off mode as it was demonstrated e.g., in cases of fast classification of brick samples or fast identification of biominerals [3, 4]. In laboratory conditions, LIBS is a promising alternative to much more complicated, expensive, and slower laser-ablations connected to inductively coupled plasma mass spectroscopy (LA-ICP-MS) techniques [5]. Moreover, LIBS can be effectively combined with X-ray computed tomography (CT). CT provides structure information and a 3D model of the sample, in which materials of different physical properties are distinguished, and LIBS can

  • Název v anglickém jazyce

    Application of LIBS: Elemental mapping

  • Popis výsledku anglicky

    Scan analysis by Laser-Induced Breakdown Spectroscopy (LIBS) is usually performed as sampling in the series of single points (ablation craters), in one, two, or even three directions. The spatial (lateral and depth) resolution is then determined by the size, depth and spacing of the ablation craters. Tightly focused short wavelength laser pulses enable production of both small in diameter and depth ablation craters. However, for the smallest LIBS ablation craters, the emission intensities mainly in single-pulse configuration are usually low, and not sufficient especially for minor and trace elements detection. Double-pulsed LIBS techniques may significantly enhance the signal even if a small amount of material per pulse is ablated. Therefore, double-pulse LIBS instrumentation equipped with UV ablation lasers and IR lasers in reheating mode seem to be suitable for achieving low detection limits with high spatial-resolution. LIBS ablation chambers enable further improvement of figures of merit using the atmosphere of noble gases [1]. Because of the fact that it represents a relatively simple way for fast chemical analysis (even in situ), LIBS has several interesting applications, including e.g., compositional mapping of geological samples. The LIBS potential for discrimination of geological materials using principal component analysis (PCA) was recently examined [2]. Such approach can also be applied in stand-off mode as it was demonstrated e.g., in cases of fast classification of brick samples or fast identification of biominerals [3, 4]. In laboratory conditions, LIBS is a promising alternative to much more complicated, expensive, and slower laser-ablations connected to inductively coupled plasma mass spectroscopy (LA-ICP-MS) techniques [5]. Moreover, LIBS can be effectively combined with X-ray computed tomography (CT). CT provides structure information and a 3D model of the sample, in which materials of different physical properties are distinguished, and LIBS can

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10406 - Analytical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Horizons in World Physics

  • ISBN

    978-16-3484-194-8

  • Počet stran výsledku

    24

  • Strana od-do

    1-24

  • Počet stran knihy

    299

  • Název nakladatele

    Neuveden

  • Místo vydání

    Neuveden

  • Kód UT WoS kapitoly