Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quantitative 3D phase imaging of plasmonic metasurfaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU123565" target="_blank" >RIV/00216305:26620/17:PU123565 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b00022" target="_blank" >http://pubs.acs.org/doi/abs/10.1021/acsphotonics.7b00022</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsphotonics.7b00022" target="_blank" >10.1021/acsphotonics.7b00022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quantitative 3D phase imaging of plasmonic metasurfaces

  • Popis výsledku v původním jazyce

    Coherence-controlled holographic microscopy (CCHM) is a real-time, wide-field, and quantitative light-microscopy technique enabling 3D imaging of electromagnetic fields, providing complete information about both their intensity and phase. These attributes make CCHM a promising candidate for performance assessment of phase-altering metasurfaces, a new class of artificial materials that allow to manipulate the wavefront of passing light and thus provide unprecedented functionalities in optics and nanophotonics. In this paper, we report on our investigation of phase imaging of plasmonic metasurfaces using holographic microscopy. We demonstrate its ability to obtain phase information from the whole field of view in a single measurement on a prototypical sample consisting of silver nanodisc arrays. The experimental data were validated using FDTD simulations and a theoretical model that relates the obtained phase image to the optical response of metasurface building blocks. Finally, in order to reveal the full potential of CCHM, we employed it in the analysis of a simple metasurface represented by a plasmonic zone plate. By scanning the sample along the optical axis we were able to create a quantitative 3D phase map of fields transmitted through the zone plate. The presented results prove that CCHM is inherently suited to the task of metasurface characterization. Moreover, as the temporal resolution is limited only by the camera framerate, it can be even applied in analysis of actively tunable metasurfaces.

  • Název v anglickém jazyce

    Quantitative 3D phase imaging of plasmonic metasurfaces

  • Popis výsledku anglicky

    Coherence-controlled holographic microscopy (CCHM) is a real-time, wide-field, and quantitative light-microscopy technique enabling 3D imaging of electromagnetic fields, providing complete information about both their intensity and phase. These attributes make CCHM a promising candidate for performance assessment of phase-altering metasurfaces, a new class of artificial materials that allow to manipulate the wavefront of passing light and thus provide unprecedented functionalities in optics and nanophotonics. In this paper, we report on our investigation of phase imaging of plasmonic metasurfaces using holographic microscopy. We demonstrate its ability to obtain phase information from the whole field of view in a single measurement on a prototypical sample consisting of silver nanodisc arrays. The experimental data were validated using FDTD simulations and a theoretical model that relates the obtained phase image to the optical response of metasurface building blocks. Finally, in order to reveal the full potential of CCHM, we employed it in the analysis of a simple metasurface represented by a plasmonic zone plate. By scanning the sample along the optical axis we were able to create a quantitative 3D phase map of fields transmitted through the zone plate. The presented results prove that CCHM is inherently suited to the task of metasurface characterization. Moreover, as the temporal resolution is limited only by the camera framerate, it can be even applied in analysis of actively tunable metasurfaces.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Photonics

  • ISSN

    2330-4022

  • e-ISSN

  • Svazek periodika

    4

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    1389 -1397

  • Kód UT WoS článku

    000404098200015

  • EID výsledku v databázi Scopus

    2-s2.0-85021148024