Regularized extended estimation with stabilized exponential forgetting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU125709" target="_blank" >RIV/00216305:26620/17:PU125709 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7828031/" target="_blank" >http://ieeexplore.ieee.org/document/7828031/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TAC.2017.2656379" target="_blank" >10.1109/TAC.2017.2656379</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regularized extended estimation with stabilized exponential forgetting
Popis výsledku v původním jazyce
This technical note concerns the problem of variable regularized estimation of time-varying nonlinear systems from the Bayesian viewpoint. The questions of how to impose the posterior information being variably regularized and how to forget this information are carefully discussed. The estimator design adopts the strategy of the iterated Kalman filter but differs in that, instead of the separated moments of the linearized system, only the augmented covariance matrix is updated. To suppress obsolete information, a decision problem involving the Kullback-Leibler divergence is solved. The decision provides the best combination of a pair of time-evolution model hypotheses in terms of the geometric mean. As a result, exponential forgetting with the adaptively tuned factor is inserted into the estimation process. The regularization of the investigated statistics is induced through the processing of externally supplied information. The presented estimator allows for absolute discarding or, conversely, retention of external information produced in terms of the Normal-Wishart distribution.
Název v anglickém jazyce
Regularized extended estimation with stabilized exponential forgetting
Popis výsledku anglicky
This technical note concerns the problem of variable regularized estimation of time-varying nonlinear systems from the Bayesian viewpoint. The questions of how to impose the posterior information being variably regularized and how to forget this information are carefully discussed. The estimator design adopts the strategy of the iterated Kalman filter but differs in that, instead of the separated moments of the linearized system, only the augmented covariance matrix is updated. To suppress obsolete information, a decision problem involving the Kullback-Leibler divergence is solved. The decision provides the best combination of a pair of time-evolution model hypotheses in terms of the geometric mean. As a result, exponential forgetting with the adaptively tuned factor is inserted into the estimation process. The regularization of the investigated statistics is induced through the processing of externally supplied information. The presented estimator allows for absolute discarding or, conversely, retention of external information produced in terms of the Normal-Wishart distribution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON AUTOMATIC CONTROL
ISSN
0018-9286
e-ISSN
1558-2523
Svazek periodika
62
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
6513-6520
Kód UT WoS článku
000417090000041
EID výsledku v databázi Scopus
—