Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F17%3APU127448" target="_blank" >RIV/00216305:26620/17:PU127448 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acsami.7b14175" target="_blank" >http://dx.doi.org/10.1021/acsami.7b14175</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.7b14175" target="_blank" >10.1021/acsami.7b14175</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture
Popis výsledku v původním jazyce
Some biomaterials are osteoinductive, that is, they are able to trigger the osteogenic process by inducing the differentiation of mesenchymal stem cells to the osteogenic lineage. Although the underlying mechanism is still unclear, microporosity and specific surface area (SSA) have been identified as critical factors in material-associated osteoinduction. However, only sintered ceramics, which have a limited range of porosities and SSA, have been analyzed so far. In this work, we were able to extend these ranges to the nanoscale, through the foaming and 3D-printing of biomimetic calcium phosphates, thereby obtaining scaffolds with controlled micro- and nanoporosity and with tailored macropore architectures. Calcium-deficient hydroxyapatite (CDHA) scaffolds were evaluated after 6 and 12 weeks in an ectopic-implantation canine model and compared with two sintered ceramics, biphasic calcium phosphate and beta-tricalcium phosphate. Only foams with spherical, concave macropores and not 3D-printed scaffolds with convex, prismatic macropores induced significant ectopic bone formation. Among them, biomimetic nanostructured CDHA produced the highest incidence of ectopic bone and accelerated bone formation when compared with conventional microstructured sintered calcium phosphates with the same macropore architecture. Moreover, they exhibited different bone formation patterns; in CDHA foams, the new ectopic bone progressively replaced the scaffold, whereas in sintered biphasic calcium phosphate scaffolds, bone was deposited on the surface of the material, progressively filling the pore space. In conclusion, this study demonstrates that the high reactivity of nanostructured biomimetic CDHA combined with a spherical, concave macroporosity allows the pushing of the osteoinduction potential beyond the limits of microstructured calcium phosphate ceramics.
Název v anglickém jazyce
Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture
Popis výsledku anglicky
Some biomaterials are osteoinductive, that is, they are able to trigger the osteogenic process by inducing the differentiation of mesenchymal stem cells to the osteogenic lineage. Although the underlying mechanism is still unclear, microporosity and specific surface area (SSA) have been identified as critical factors in material-associated osteoinduction. However, only sintered ceramics, which have a limited range of porosities and SSA, have been analyzed so far. In this work, we were able to extend these ranges to the nanoscale, through the foaming and 3D-printing of biomimetic calcium phosphates, thereby obtaining scaffolds with controlled micro- and nanoporosity and with tailored macropore architectures. Calcium-deficient hydroxyapatite (CDHA) scaffolds were evaluated after 6 and 12 weeks in an ectopic-implantation canine model and compared with two sintered ceramics, biphasic calcium phosphate and beta-tricalcium phosphate. Only foams with spherical, concave macropores and not 3D-printed scaffolds with convex, prismatic macropores induced significant ectopic bone formation. Among them, biomimetic nanostructured CDHA produced the highest incidence of ectopic bone and accelerated bone formation when compared with conventional microstructured sintered calcium phosphates with the same macropore architecture. Moreover, they exhibited different bone formation patterns; in CDHA foams, the new ectopic bone progressively replaced the scaffold, whereas in sintered biphasic calcium phosphate scaffolds, bone was deposited on the surface of the material, progressively filling the pore space. In conclusion, this study demonstrates that the high reactivity of nanostructured biomimetic CDHA combined with a spherical, concave macroporosity allows the pushing of the osteoinduction potential beyond the limits of microstructured calcium phosphate ceramics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30404 - Biomaterials (as related to medical implants, devices, sensors)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS applied materials & interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
9
Číslo periodika v rámci svazku
48
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
41722-41736
Kód UT WoS článku
000417669300011
EID výsledku v databázi Scopus
—