Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU132391" target="_blank" >RIV/00216305:26620/19:PU132391 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00082" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00082</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.nanolett.9b00082" target="_blank" >10.1021/acs.nanolett.9b00082</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing
Popis výsledku v původním jazyce
Nanomechanical resonators are widely operated as force and mass sensors with sensitivities in the zepto-Newton (10−21) and yocto-gram (10−24) regime, respectively. Their accuracy, however, is usually undermined by high uncertainties in the effective mass of the system, whose estimation is a nontrivial task. This critical issue can be addressed in levitodynamics, where the nanoresonator typically consists of a single silica nanoparticle of well-defined mass. Yet, current methods assess the mass of the levitated nanoparticles with uncertainties up to a few tens of percent, therefore preventing to achieve unprecedented sensing performances. Here, we present a novel measurement protocol that uses the electric field from a surrounding plate capacitor to directly drive a charged optically levitated particle in moderate vacuum. The developed technique estimates the mass within a statistical error below 1% and a systematic error of ∼2%, and paves the way toward more reliable sensing and metrology applications of levitodynamics systems.
Název v anglickém jazyce
Accurate Mass Measurement of a Levitated Nanomechanical Resonator for Precision Force-Sensing
Popis výsledku anglicky
Nanomechanical resonators are widely operated as force and mass sensors with sensitivities in the zepto-Newton (10−21) and yocto-gram (10−24) regime, respectively. Their accuracy, however, is usually undermined by high uncertainties in the effective mass of the system, whose estimation is a nontrivial task. This critical issue can be addressed in levitodynamics, where the nanoresonator typically consists of a single silica nanoparticle of well-defined mass. Yet, current methods assess the mass of the levitated nanoparticles with uncertainties up to a few tens of percent, therefore preventing to achieve unprecedented sensing performances. Here, we present a novel measurement protocol that uses the electric field from a surrounding plate capacitor to directly drive a charged optically levitated particle in moderate vacuum. The developed technique estimates the mass within a statistical error below 1% and a systematic error of ∼2%, and paves the way toward more reliable sensing and metrology applications of levitodynamics systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nano Letters
ISSN
1530-6984
e-ISSN
1530-6992
Svazek periodika
19
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
6711-6715
Kód UT WoS článku
000490353500001
EID výsledku v databázi Scopus
—