Effect of Nanoparticle Organization on Molecular Mobility and Mechanical Properties of Polymer Nanocomposites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU133233" target="_blank" >RIV/00216305:26620/19:PU133233 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.macromol.9b01197" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.macromol.9b01197</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.macromol.9b01197" target="_blank" >10.1021/acs.macromol.9b01197</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of Nanoparticle Organization on Molecular Mobility and Mechanical Properties of Polymer Nanocomposites
Popis výsledku v původním jazyce
Influence of nanoparticle (NP) spatial organization on relaxation and mechanical properties of polymer nanocomposites (PNCs) was investigated. For the first time, the properties of PNCs with various nanostructures at the constant chemical composition were related to their experimentally determined structural parameters—effective interfacial surface and interparticle distance. Segmental scale reinforcement active below and above glass transition was attributed to the immobilization and frustration of polymer segments caused by attractive polymer–particle interactions. A novel reinforcing mechanism of chain bound clusters related to their internal structure was revealed while negligible reinforcement from NP–NP interactions of contact aggregates was found. The mechanical response of PNCs was correlated with appropriate relaxation properties. It provided the first experimental proof that deformation yielding dynamics of PNCs is controlled by glass transition segmental mobility. Main features of various NP spatial organizations were characterized. Chain bound clusters showed the most significant reinforcement above the glass transition temperature (Tg). Moreover, the hierarchical nature of chain bound clusters caused broadening of the ductile response compared to other nanostructures and also to the neat matrix. The most pronounced enhancement of elastic modulus, yield stress, and creep durability was found for individually dispersed NPs. The acquired nanostructure–property relationships will provide a foundation for the future design of hierarchic and multidomain nanocomposites.
Název v anglickém jazyce
Effect of Nanoparticle Organization on Molecular Mobility and Mechanical Properties of Polymer Nanocomposites
Popis výsledku anglicky
Influence of nanoparticle (NP) spatial organization on relaxation and mechanical properties of polymer nanocomposites (PNCs) was investigated. For the first time, the properties of PNCs with various nanostructures at the constant chemical composition were related to their experimentally determined structural parameters—effective interfacial surface and interparticle distance. Segmental scale reinforcement active below and above glass transition was attributed to the immobilization and frustration of polymer segments caused by attractive polymer–particle interactions. A novel reinforcing mechanism of chain bound clusters related to their internal structure was revealed while negligible reinforcement from NP–NP interactions of contact aggregates was found. The mechanical response of PNCs was correlated with appropriate relaxation properties. It provided the first experimental proof that deformation yielding dynamics of PNCs is controlled by glass transition segmental mobility. Main features of various NP spatial organizations were characterized. Chain bound clusters showed the most significant reinforcement above the glass transition temperature (Tg). Moreover, the hierarchical nature of chain bound clusters caused broadening of the ductile response compared to other nanostructures and also to the neat matrix. The most pronounced enhancement of elastic modulus, yield stress, and creep durability was found for individually dispersed NPs. The acquired nanostructure–property relationships will provide a foundation for the future design of hierarchic and multidomain nanocomposites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-17540S" target="_blank" >GA18-17540S: Nízkohustotní funkční nanokompozity</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MACROMOLECULES
ISSN
0024-9297
e-ISSN
1520-5835
Svazek periodika
52
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
6250-6259
Kód UT WoS článku
000483437500022
EID výsledku v databázi Scopus
2-s2.0-85071677391