Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Loading condition monitoring on trusses applying a machine learning approach with training data of a finite element model: A study case

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU138224" target="_blank" >RIV/00216305:26620/19:PU138224 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Loading condition monitoring on trusses applying a machine learning approach with training data of a finite element model: A study case

  • Popis výsledku v původním jazyce

    Structural health monitoring (SHM) techniques deal with the changes in the dynamic or static characteristics of the structures that affect its performance during the service [1]. Mainly, these techniques are based on vibrations, and their implementation includes complex integrated systems not addressed from the structural design. Despite the numerous applications of SHM, loading condition monitoring (application place, direction, and magnitude) is not a very implemented strategy in this engineering field. This paper presents a methodology to monitor the application of external forces on structures using a learning machine process and finite element analysis (FEA). In Figure 1a is described the proposed monitoring methodology, which is applied to a truss structure to validate this study. The truss contains nine structural elements, and each one presents a piezoelectric transducer to measure the forces in their links, as illustrated in Figure 1b. The real truss was modeled by means of a FEA (implemented in Matlab with truss elements) considering their mechanical properties and loading conditions, as observed in Figure 1c. To simulate different loading conditions, a force F_s is applied in node 3 varying two parameters, angle β, and magnitude. This is carried out to establish a database using the internal forces (in each bar) obtained by FEA.

  • Název v anglickém jazyce

    Loading condition monitoring on trusses applying a machine learning approach with training data of a finite element model: A study case

  • Popis výsledku anglicky

    Structural health monitoring (SHM) techniques deal with the changes in the dynamic or static characteristics of the structures that affect its performance during the service [1]. Mainly, these techniques are based on vibrations, and their implementation includes complex integrated systems not addressed from the structural design. Despite the numerous applications of SHM, loading condition monitoring (application place, direction, and magnitude) is not a very implemented strategy in this engineering field. This paper presents a methodology to monitor the application of external forces on structures using a learning machine process and finite element analysis (FEA). In Figure 1a is described the proposed monitoring methodology, which is applied to a truss structure to validate this study. The truss contains nine structural elements, and each one presents a piezoelectric transducer to measure the forces in their links, as illustrated in Figure 1b. The real truss was modeled by means of a FEA (implemented in Matlab with truss elements) considering their mechanical properties and loading conditions, as observed in Figure 1c. To simulate different loading conditions, a force F_s is applied in node 3 varying two parameters, angle β, and magnitude. This is carried out to establish a database using the internal forces (in each bar) obtained by FEA.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of 35th conference Computational Mechanics 2019

  • ISBN

    978-80-261-0889-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    3

  • Strana od-do

    205-206

  • Název nakladatele

    University of West Bohemia,

  • Místo vydání

    Plzen, Czech Republic

  • Místo konání akce

    Srní

  • Datum konání akce

    4. 11. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku