Loading condition monitoring on trusses applying a machine learning approach with training data of a finite element model: A study case
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU138224" target="_blank" >RIV/00216305:26620/19:PU138224 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Loading condition monitoring on trusses applying a machine learning approach with training data of a finite element model: A study case
Popis výsledku v původním jazyce
Structural health monitoring (SHM) techniques deal with the changes in the dynamic or static characteristics of the structures that affect its performance during the service [1]. Mainly, these techniques are based on vibrations, and their implementation includes complex integrated systems not addressed from the structural design. Despite the numerous applications of SHM, loading condition monitoring (application place, direction, and magnitude) is not a very implemented strategy in this engineering field. This paper presents a methodology to monitor the application of external forces on structures using a learning machine process and finite element analysis (FEA). In Figure 1a is described the proposed monitoring methodology, which is applied to a truss structure to validate this study. The truss contains nine structural elements, and each one presents a piezoelectric transducer to measure the forces in their links, as illustrated in Figure 1b. The real truss was modeled by means of a FEA (implemented in Matlab with truss elements) considering their mechanical properties and loading conditions, as observed in Figure 1c. To simulate different loading conditions, a force F_s is applied in node 3 varying two parameters, angle β, and magnitude. This is carried out to establish a database using the internal forces (in each bar) obtained by FEA.
Název v anglickém jazyce
Loading condition monitoring on trusses applying a machine learning approach with training data of a finite element model: A study case
Popis výsledku anglicky
Structural health monitoring (SHM) techniques deal with the changes in the dynamic or static characteristics of the structures that affect its performance during the service [1]. Mainly, these techniques are based on vibrations, and their implementation includes complex integrated systems not addressed from the structural design. Despite the numerous applications of SHM, loading condition monitoring (application place, direction, and magnitude) is not a very implemented strategy in this engineering field. This paper presents a methodology to monitor the application of external forces on structures using a learning machine process and finite element analysis (FEA). In Figure 1a is described the proposed monitoring methodology, which is applied to a truss structure to validate this study. The truss contains nine structural elements, and each one presents a piezoelectric transducer to measure the forces in their links, as illustrated in Figure 1b. The real truss was modeled by means of a FEA (implemented in Matlab with truss elements) considering their mechanical properties and loading conditions, as observed in Figure 1c. To simulate different loading conditions, a force F_s is applied in node 3 varying two parameters, angle β, and magnitude. This is carried out to establish a database using the internal forces (in each bar) obtained by FEA.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 35th conference Computational Mechanics 2019
ISBN
978-80-261-0889-4
ISSN
—
e-ISSN
—
Počet stran výsledku
3
Strana od-do
205-206
Název nakladatele
University of West Bohemia,
Místo vydání
Plzen, Czech Republic
Místo konání akce
Srní
Datum konání akce
4. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—