3D Printing for Electrochemical Energy Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136395" target="_blank" >RIV/00216305:26620/20:PU136395 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/20:43920477
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00783" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.chemrev.9b00783</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.chemrev.9b00783" target="_blank" >10.1021/acs.chemrev.9b00783</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Printing for Electrochemical Energy Applications
Popis výsledku v původním jazyce
Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.
Název v anglickém jazyce
3D Printing for Electrochemical Energy Applications
Popis výsledku anglicky
Additive manufacturing (also known as three-dimensional (3D) printing) is being extensively utilized in many areas of electrochemistry to produce electrodes and devices, as this technique allows for fast prototyping and is relatively low cost. Furthermore, there is a variety of 3D-printing technologies available, which include fused deposition modeling (FDM), inkjet printing, select laser melting (SLM), and stereolithography (SLA), making additive manufacturing a highly desirable technique for electrochemical purposes. In particular, over the last number of years, a significant amount of research into using 3D printing to create electrodes/devices for electrochemical energy conversion and storage has emerged. Strides have been made in this area; however, there are still a number of challenges and drawbacks that need to be overcome in order to 3D print active and stable electrodes/devices for electrochemical energy conversion and storage to rival that of the state-of-the-art. In this Review, we will give an overview of the reasoning behind using 3D printing for these electrochemical applications. We will then discuss how the electrochemical performance of the electrodes/devices are affected by the various 3D-printing technologies and by manipulating the 3D-printed electrodes by post modification techniques. Finally, we will give our insights into the future perspectives of this exciting field based on our discussion through this Review.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Reviews
ISSN
0009-2665
e-ISSN
1520-6890
Svazek periodika
120
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
2783-2810
Kód UT WoS článku
000526392500006
EID výsledku v databázi Scopus
—