On the effect of supercell size and strain localization in computational tensile tests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136718" target="_blank" >RIV/00216305:26620/20:PU136718 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-651X/ab9f83" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-651X/ab9f83</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-651X/ab9f83" target="_blank" >10.1088/1361-651X/ab9f83</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the effect of supercell size and strain localization in computational tensile tests
Popis výsledku v původním jazyce
Atomistic simulations of tensile test are often employed in studies of cleavage or decohesion of crystals and interfaces. However, the particular numerical implementation differ from model to model. Each individual model is characterized not only by a particular computational procedure but also by different loading conditions and the way the crystal breaks. Therefore, calculated values of strength can substantially differ and the particular choice of the model affects the predictions made. This paper is intended to illustrate differences in computational models and their results. Particular attention is paid to differences in computed values of fracture stress and its dependence on the size of computational supercell. It is shown that the fracture stress computed in models considering uniform stress distribution does not depend on the supercell size. On the other hand, the fracture stress decreases with increasing supercell size in models with localized strain.
Název v anglickém jazyce
On the effect of supercell size and strain localization in computational tensile tests
Popis výsledku anglicky
Atomistic simulations of tensile test are often employed in studies of cleavage or decohesion of crystals and interfaces. However, the particular numerical implementation differ from model to model. Each individual model is characterized not only by a particular computational procedure but also by different loading conditions and the way the crystal breaks. Therefore, calculated values of strength can substantially differ and the particular choice of the model affects the predictions made. This paper is intended to illustrate differences in computational models and their results. Particular attention is paid to differences in computed values of fracture stress and its dependence on the size of computational supercell. It is shown that the fracture stress computed in models considering uniform stress distribution does not depend on the supercell size. On the other hand, the fracture stress decreases with increasing supercell size in models with localized strain.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING
ISSN
0965-0393
e-ISSN
1361-651X
Svazek periodika
28
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
„065011-1“-„065011-10“
Kód UT WoS článku
000556797600001
EID výsledku v databázi Scopus
—