Thomson scattering versus modeling of the microwave plasma torch: a long standing discrepancy almost solved
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU137434" target="_blank" >RIV/00216305:26620/20:PU137434 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/20:00117958
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2020/ja/d0ja00161a#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2020/ja/d0ja00161a#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d0ja00161a" target="_blank" >10.1039/d0ja00161a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Thomson scattering versus modeling of the microwave plasma torch: a long standing discrepancy almost solved
Popis výsledku v původním jazyce
The characterization of plasmas gives much more insight if the results of modeling are compared with those of experiments. In the past, several modeling-experiment studies were performed on the microwave plasma torch (MPT). For the modeling a Global Plasma Model (GPM) was employed and for the experiment Thomson scattering (TS) was used. The same GPM-TS comparison was successfully applied to several other, more robust plasmas. However for the MPT it was found that the comparison led to severe discrepancies. The most salient feature was that the value of the electron temperature,T-e, found by TS, was substantially higher than what GPMs predicted. Several attempts were undertaken to solve this problem by refining the model and its most important input: the gradient of the electron density. The attention for the model implied that the TS technique was not scrutinized sufficiently. Recently it was discovered that the outcome of TS is very sensitive to the spectral fitting procedure. In the past this was carried out by employing the calibrated intensity using Gaussian fitting. However, a procedure based on the fitting of the spectral shape by using modified Gaussian fitting gives better results and leads to a lowerT(e)value, more in the range of the GPM results. This paper discusses the background of the GPM and gives the basis of TS fitting procedures and an analysis of the systematic error that can be made when TS is performed on filamentary MPT-like plasmas.
Název v anglickém jazyce
Thomson scattering versus modeling of the microwave plasma torch: a long standing discrepancy almost solved
Popis výsledku anglicky
The characterization of plasmas gives much more insight if the results of modeling are compared with those of experiments. In the past, several modeling-experiment studies were performed on the microwave plasma torch (MPT). For the modeling a Global Plasma Model (GPM) was employed and for the experiment Thomson scattering (TS) was used. The same GPM-TS comparison was successfully applied to several other, more robust plasmas. However for the MPT it was found that the comparison led to severe discrepancies. The most salient feature was that the value of the electron temperature,T-e, found by TS, was substantially higher than what GPMs predicted. Several attempts were undertaken to solve this problem by refining the model and its most important input: the gradient of the electron density. The attention for the model implied that the TS technique was not scrutinized sufficiently. Recently it was discovered that the outcome of TS is very sensitive to the spectral fitting procedure. In the past this was carried out by employing the calibrated intensity using Gaussian fitting. However, a procedure based on the fitting of the spectral shape by using modified Gaussian fitting gives better results and leads to a lowerT(e)value, more in the range of the GPM results. This paper discusses the background of the GPM and gives the basis of TS fitting procedures and an analysis of the systematic error that can be made when TS is performed on filamentary MPT-like plasmas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Analytical Atomic Spectrometry
ISSN
0267-9477
e-ISSN
1364-5544
Svazek periodika
35
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
2064-2074
Kód UT WoS článku
000569703600027
EID výsledku v databázi Scopus
—