A novel approach towards experimental parameters optimization in Laser-induced breakdown spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU137470" target="_blank" >RIV/00216305:26620/20:PU137470 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel approach towards experimental parameters optimization in Laser-induced breakdown spectroscopy
Popis výsledku v původním jazyce
Here we propose a novel and universal method of Laser-Induced breakdown spectroscopy (LIBS) experimental conditions optimization based on machine learning. The simple feedforward neural network (FNN) was trained by empirically measured data. The design of FNN was optimized using a genetic algorithm (GA). As the figure of merit of GA was utilized the signal to noise ratio of selected spectral lines. The input data for FNN can be divided in two groups, one group describing the sample and spectral lines of respective elements (e.g. sample density and hardness, content of selected element, energy levels of selected transitions etc.), and the other group describing the experimental conditions (e.g. laser wavelength and energy, gate delay, gate width etc.). The method is demonstrated and explained in a simple case of single pulse LIBS and two basal parameters – gate delay and laser pulse fluence. Afterwards, we present the optimization for more complex measurement three orthogonal laser pulse (3P LIBS), whe
Název v anglickém jazyce
A novel approach towards experimental parameters optimization in Laser-induced breakdown spectroscopy
Popis výsledku anglicky
Here we propose a novel and universal method of Laser-Induced breakdown spectroscopy (LIBS) experimental conditions optimization based on machine learning. The simple feedforward neural network (FNN) was trained by empirically measured data. The design of FNN was optimized using a genetic algorithm (GA). As the figure of merit of GA was utilized the signal to noise ratio of selected spectral lines. The input data for FNN can be divided in two groups, one group describing the sample and spectral lines of respective elements (e.g. sample density and hardness, content of selected element, energy levels of selected transitions etc.), and the other group describing the experimental conditions (e.g. laser wavelength and energy, gate delay, gate width etc.). The method is demonstrated and explained in a simple case of single pulse LIBS and two basal parameters – gate delay and laser pulse fluence. Afterwards, we present the optimization for more complex measurement three orthogonal laser pulse (3P LIBS), whe
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů