Catalyst coating of 3D printed structures via electrochemical deposition: Case of the transition metal chalcogenide MoSx for hydrogen evolution reaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU138274" target="_blank" >RIV/00216305:26620/20:PU138274 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/20:43920494
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352940720301025" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352940720301025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apmt.2020.100654" target="_blank" >10.1016/j.apmt.2020.100654</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Catalyst coating of 3D printed structures via electrochemical deposition: Case of the transition metal chalcogenide MoSx for hydrogen evolution reaction
Popis výsledku v původním jazyce
Fused filament modeling (FFM) is the most common and simplest type of 3D printing. Conductive composite filaments have become widely used for 3D printing of electrodes and electrochemical devices for sensing, energy storage and energy conversion applications. To enhance the electrochemical performance of the 3D printed parts, post printing procedures are applied. These for example consist of atomic layer deposition, which is high-end equipment demanding. We offer simple, scalable and room temperature method of coating the 3D-printed electrode surfaces via desired catalyst via electrodeposition. We show the electrodeposition of MoSx which is highly catalytic to hydrogen evolution reaction as a case study of such thin film electrodeposition. The applicability of the self-standing 3D printed nanostructure for energy conversion purposes is demonstrated. Valuable information about the heterogeneity of the activity of the catalyst is provided by the scanning electrochemical microscopy (SECM). Electrodeposition is a universal technique which allows turning the surface of 3D objects into catalysts. (c) 2020 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
Catalyst coating of 3D printed structures via electrochemical deposition: Case of the transition metal chalcogenide MoSx for hydrogen evolution reaction
Popis výsledku anglicky
Fused filament modeling (FFM) is the most common and simplest type of 3D printing. Conductive composite filaments have become widely used for 3D printing of electrodes and electrochemical devices for sensing, energy storage and energy conversion applications. To enhance the electrochemical performance of the 3D printed parts, post printing procedures are applied. These for example consist of atomic layer deposition, which is high-end equipment demanding. We offer simple, scalable and room temperature method of coating the 3D-printed electrode surfaces via desired catalyst via electrodeposition. We show the electrodeposition of MoSx which is highly catalytic to hydrogen evolution reaction as a case study of such thin film electrodeposition. The applicability of the self-standing 3D printed nanostructure for energy conversion purposes is demonstrated. Valuable information about the heterogeneity of the activity of the catalyst is provided by the scanning electrochemical microscopy (SECM). Electrodeposition is a universal technique which allows turning the surface of 3D objects into catalysts. (c) 2020 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Materials Today
ISSN
2352-9407
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
„100654-1“-„1006547-7“
Kód UT WoS článku
000598346800001
EID výsledku v databázi Scopus
2-s2.0-85084829412