Metal-organic-frameworks on 3D-printed electrodes:in situelectrochemical transformation towards the oxygen evolution reaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU138313" target="_blank" >RIV/00216305:26620/20:PU138313 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/20:43920497
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00503G#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00503G#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d0se00503g" target="_blank" >10.1039/d0se00503g</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Metal-organic-frameworks on 3D-printed electrodes:in situelectrochemical transformation towards the oxygen evolution reaction
Popis výsledku v původním jazyce
Metal-organic framework (MOF) derived materials are important alternatives for electrochemical energy storage and conversion, due to their highly large surface area, abundant active sites, and diversity in composition and structure. In this work, a controllable electrochemical transformation of ZIF-67 into active porous metal oxides is employed for the oxygen evolution reaction (OER). ZIF-67 is directly coated onto the surface of three-dimensional (3D) printed titanium (Ti) electrodes using a step-by-stepin situgrowth and then converted into cobalt oxide (Co3O4) by electrochemical cycling, designated as ZIF-67/Ti-E electrode. Raman spectroscopy, scanning electron microscopy (SEM), and cyclic voltammetry (CV) have been used to verify the electrochemical transformation from octahedral ZIF-67 to thin sheet-shaped Co3O4. This large-surface-area Co3O4, as well as the existence of Co(IV)species right before water oxidation, plays a critical role in enhanced OER performance under alkaline electrolysis conditions. The optimized ZIF-67/Ti-E electrode has demonstrated a better OER performance with a low overpotential of 360 mV at a current density of 10 mA cm(-2)and excellent durability, compared with its counterparts produced by the widely popular calcination method. Our method provides a simplein situ, fast, mild, and energy-efficient approach to employ MOF-derived materials as promising OER catalysts using scaled-up 3D-printed electrodes.
Název v anglickém jazyce
Metal-organic-frameworks on 3D-printed electrodes:in situelectrochemical transformation towards the oxygen evolution reaction
Popis výsledku anglicky
Metal-organic framework (MOF) derived materials are important alternatives for electrochemical energy storage and conversion, due to their highly large surface area, abundant active sites, and diversity in composition and structure. In this work, a controllable electrochemical transformation of ZIF-67 into active porous metal oxides is employed for the oxygen evolution reaction (OER). ZIF-67 is directly coated onto the surface of three-dimensional (3D) printed titanium (Ti) electrodes using a step-by-stepin situgrowth and then converted into cobalt oxide (Co3O4) by electrochemical cycling, designated as ZIF-67/Ti-E electrode. Raman spectroscopy, scanning electron microscopy (SEM), and cyclic voltammetry (CV) have been used to verify the electrochemical transformation from octahedral ZIF-67 to thin sheet-shaped Co3O4. This large-surface-area Co3O4, as well as the existence of Co(IV)species right before water oxidation, plays a critical role in enhanced OER performance under alkaline electrolysis conditions. The optimized ZIF-67/Ti-E electrode has demonstrated a better OER performance with a low overpotential of 360 mV at a current density of 10 mA cm(-2)and excellent durability, compared with its counterparts produced by the widely popular calcination method. Our method provides a simplein situ, fast, mild, and energy-efficient approach to employ MOF-derived materials as promising OER catalysts using scaled-up 3D-printed electrodes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26896X" target="_blank" >GX19-26896X: Elektrochemie 2D Nanomateriálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SUSTAINABLE ENERGY & FUELS
ISSN
2398-4902
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
3732-3738
Kód UT WoS článku
000544657200050
EID výsledku v databázi Scopus
—