Collector Droplet Behavior during Formation of Nanowire Junctions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU139265" target="_blank" >RIV/00216305:26620/20:PU139265 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.0c01653" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.0c01653</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.0c01653" target="_blank" >10.1021/acs.jpclett.0c01653</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Collector Droplet Behavior during Formation of Nanowire Junctions
Popis výsledku v původním jazyce
Formation of nanowire networks is an appealing strategy for demonstrating novel phenomena at the nanoscale, e.g., detection of Majorana Fermions, as well as an essential step in realizing complex nanowire-based architectures. However, a detailed description of mechanisms taking place during growth of such complex structures is lacking. Here, the experimental observations of gold-catalyzed germanium nanowire junction formation are explained utilizing phase field modeling corroborated with real-time in situ scanning electron microscopy. When the two nanowires collide head on during the growth, we observe two scenarios. (i) Two catalytic droplets merge into one, and the growth continues as a single nanowire. (ii) The droplets merge and subsequently split again, giving rise to the growth of two daughter nanowires. Both the experiments and modeling indicate the critical importance of the liquid-solid growth interface anisotropy and the growth kinetics in facilitating the structural transition during the nanowire merging process.
Název v anglickém jazyce
Collector Droplet Behavior during Formation of Nanowire Junctions
Popis výsledku anglicky
Formation of nanowire networks is an appealing strategy for demonstrating novel phenomena at the nanoscale, e.g., detection of Majorana Fermions, as well as an essential step in realizing complex nanowire-based architectures. However, a detailed description of mechanisms taking place during growth of such complex structures is lacking. Here, the experimental observations of gold-catalyzed germanium nanowire junction formation are explained utilizing phase field modeling corroborated with real-time in situ scanning electron microscopy. When the two nanowires collide head on during the growth, we observe two scenarios. (i) Two catalytic droplets merge into one, and the growth continues as a single nanowire. (ii) The droplets merge and subsequently split again, giving rise to the growth of two daughter nanowires. Both the experiments and modeling indicate the critical importance of the liquid-solid growth interface anisotropy and the growth kinetics in facilitating the structural transition during the nanowire merging process.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
J PHYS CHEM LETT
ISSN
1948-7185
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
6498-6504
Kód UT WoS článku
000563737900004
EID výsledku v databázi Scopus
—