Time-evolution of nonlinear optomechanical systems: interplay of mechanical squeezing and non-Gaussianity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU139670" target="_blank" >RIV/00216305:26620/20:PU139670 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1751-8121/ab64d5" target="_blank" >https://iopscience.iop.org/article/10.1088/1751-8121/ab64d5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ab64d5" target="_blank" >10.1088/1751-8121/ab64d5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time-evolution of nonlinear optomechanical systems: interplay of mechanical squeezing and non-Gaussianity
Popis výsledku v původním jazyce
We solve the time evolution of a nonlinear optomechanical Hamiltonian with arbitrary time-dependent mechanical displacement, mechanical single-mode squeezing and a time-dependent optomechanical coupling up to the solution of two second-order differential equations. The solution is based on identifying a minimal and finite Lie algebra that generates the time-evolution of the system. This reduces the problem to considering a finite set of coupled ordinary differential equations of real functions. To demonstrate the applicability of our method, we compute the degree of non-Gaussianity of the time-evolved state of the system by means of a measure based on the relative entropy of the non-Gaussian state and its closest Gaussian reference state. We find that the addition of a constant mechanical squeezing term to the standard optomechanical Hamiltonian generally decreases the overall non-Gaussian character of the state. For sinusoidally modulated squeezing, the two second-order differential equations mentioned above take the form of the Mathieu equation. We derive perturbative solutions for a small squeezing amplitude at parametric resonance and show that they correspond to the rotating-wave approximation at times larger than the scale set by the mechanical frequency. We find that the non-Gaussianity of the state increases with both time and the squeezing parameter in this specific regime.
Název v anglickém jazyce
Time-evolution of nonlinear optomechanical systems: interplay of mechanical squeezing and non-Gaussianity
Popis výsledku anglicky
We solve the time evolution of a nonlinear optomechanical Hamiltonian with arbitrary time-dependent mechanical displacement, mechanical single-mode squeezing and a time-dependent optomechanical coupling up to the solution of two second-order differential equations. The solution is based on identifying a minimal and finite Lie algebra that generates the time-evolution of the system. This reduces the problem to considering a finite set of coupled ordinary differential equations of real functions. To demonstrate the applicability of our method, we compute the degree of non-Gaussianity of the time-evolved state of the system by means of a measure based on the relative entropy of the non-Gaussian state and its closest Gaussian reference state. We find that the addition of a constant mechanical squeezing term to the standard optomechanical Hamiltonian generally decreases the overall non-Gaussian character of the state. For sinusoidally modulated squeezing, the two second-order differential equations mentioned above take the form of the Mathieu equation. We derive perturbative solutions for a small squeezing amplitude at parametric resonance and show that they correspond to the rotating-wave approximation at times larger than the scale set by the mechanical frequency. We find that the non-Gaussianity of the state increases with both time and the squeezing parameter in this specific regime.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015041" target="_blank" >LM2015041: CEITEC Nano</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
53
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
40
Strana od-do
„075304-1“-„075304-40“
Kód UT WoS článku
000520153400001
EID výsledku v databázi Scopus
—