Nanoscale evolution of stress concentrations and crack morphology in multilayered CrN coating during indentation: Experiment and simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU140116" target="_blank" >RIV/00216305:26620/20:PU140116 - isvavai.cz</a>
Výsledek na webu
<a href="https://linkinghub.elsevier.com/retrieve/pii/S0264127520300113" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S0264127520300113</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matdes.2020.108478" target="_blank" >10.1016/j.matdes.2020.108478</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanoscale evolution of stress concentrations and crack morphology in multilayered CrN coating during indentation: Experiment and simulation
Popis výsledku v původním jazyce
The layered architecture approach allows designing mechanical and fracture properties of hard coatings. The current study investigates the performance of a multilayered CrN coating, consisted of 5 mu m CrN sublayers of very similar mechanical properties and microstructure but different residual stress states, during in-situ wedge indentation. A finite element model of the indentation was developed and validated against measurements of the local multiaxial stress fields during indentation, characterized by means of X-ray nanodiffraction analysis with a spatial resolution of 500 nm. By means of numerical fracture mechanics the effect of the multilayered structure on the formation and morphology of mode II cracks is analyzed. The configurational force concept was applied to investigate the crack driving forces and crack extension angles of static cracks in different geometrical arrangements. The simulation results agree well with the experimental findings and reveal a shielding effect preventing an interface-near crack from entering the CrN layer with the higher compressive residual stresses. Furthermore, the possibility to match the numerical results with the locally resolved experiments allowed determining validated material parameters for the deformation and fracture behavior. The work revealed e.g. that a K-IIC of around 1 MPa.m(1/2) is an appropriate choice for the investigated CrN coating. (C) 2020 The Authors. Published by Elsevier Ltd.
Název v anglickém jazyce
Nanoscale evolution of stress concentrations and crack morphology in multilayered CrN coating during indentation: Experiment and simulation
Popis výsledku anglicky
The layered architecture approach allows designing mechanical and fracture properties of hard coatings. The current study investigates the performance of a multilayered CrN coating, consisted of 5 mu m CrN sublayers of very similar mechanical properties and microstructure but different residual stress states, during in-situ wedge indentation. A finite element model of the indentation was developed and validated against measurements of the local multiaxial stress fields during indentation, characterized by means of X-ray nanodiffraction analysis with a spatial resolution of 500 nm. By means of numerical fracture mechanics the effect of the multilayered structure on the formation and morphology of mode II cracks is analyzed. The configurational force concept was applied to investigate the crack driving forces and crack extension angles of static cracks in different geometrical arrangements. The simulation results agree well with the experimental findings and reveal a shielding effect preventing an interface-near crack from entering the CrN layer with the higher compressive residual stresses. Furthermore, the possibility to match the numerical results with the locally resolved experiments allowed determining validated material parameters for the deformation and fracture behavior. The work revealed e.g. that a K-IIC of around 1 MPa.m(1/2) is an appropriate choice for the investigated CrN coating. (C) 2020 The Authors. Published by Elsevier Ltd.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials & Design
ISSN
0264-1275
e-ISSN
1873-4197
Svazek periodika
188
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
„108478-1“-„108478-11“
Kód UT WoS článku
000514567900043
EID výsledku v databázi Scopus
—