Inconel-steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU140117" target="_blank" >RIV/00216305:26620/20:PU140117 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.addma.2019.101027" target="_blank" >https://doi.org/10.1016/j.addma.2019.101027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.addma.2019.101027" target="_blank" >10.1016/j.addma.2019.101027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inconel-steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients
Popis výsledku v původním jazyce
Synthesis of multi-metal hybrid structures with narrow heat affected zones, limited residual stresses and secondary phase occurrence represents a serious scientific and technological challenge. In this work, liquid dispersed metal powder bed fusion was used to additively manufacture a multilayered structure based on alternating Inconel 625 alloy (IN625) and 316L stainless steel (316L) layers on a 316L base plate. Analytical scanning and transmission electron microscopies, high-energy synchrotron X-ray diffraction and nanoindentation analysis reveal sharp compositional, structural and microstructural boundaries between alternating 60 mu m thick alloys' subregions and unique microstructures at macro-, micro- and nano-scales. The periodic occurrence of IN625 and 316L sub-regions is correlated with a cross-sectional hardness increase and decrease and compressive stress decrease and increase, respectively. The laser scanning strategy induced a growth of elongated grains separated by zig-zag low-angle grain boundaries, which correlate with the occurrence of zig-zag cracks propagating in the growth direction. A sharp < 110 > fiber texture within the 316L regions turns gradually into a < 100 > fiber texture in the IN625 regions. The occurrence of the C-like stress gradient with a pronounced surface tensile stress of about 500 MPa is interpreted by the temperature gradient mechanism model. Chemical analysis indicates a formation of reinforcing spherical chromium-metal-oxide nano-dispersoids and demonstrates a possibility for reactive additive manufacturing and microstructural design at the nanoscale, as a remarkable attribute of the deposition process. Finally, the study shows that the novel approach represents an effective tool to combine dissimilar metallic alloys into unique bionic hierarchical microstructures with possible synergetic properties.
Název v anglickém jazyce
Inconel-steel multilayers by liquid dispersed metal powder bed fusion: Microstructure, residual stress and property gradients
Popis výsledku anglicky
Synthesis of multi-metal hybrid structures with narrow heat affected zones, limited residual stresses and secondary phase occurrence represents a serious scientific and technological challenge. In this work, liquid dispersed metal powder bed fusion was used to additively manufacture a multilayered structure based on alternating Inconel 625 alloy (IN625) and 316L stainless steel (316L) layers on a 316L base plate. Analytical scanning and transmission electron microscopies, high-energy synchrotron X-ray diffraction and nanoindentation analysis reveal sharp compositional, structural and microstructural boundaries between alternating 60 mu m thick alloys' subregions and unique microstructures at macro-, micro- and nano-scales. The periodic occurrence of IN625 and 316L sub-regions is correlated with a cross-sectional hardness increase and decrease and compressive stress decrease and increase, respectively. The laser scanning strategy induced a growth of elongated grains separated by zig-zag low-angle grain boundaries, which correlate with the occurrence of zig-zag cracks propagating in the growth direction. A sharp < 110 > fiber texture within the 316L regions turns gradually into a < 100 > fiber texture in the IN625 regions. The occurrence of the C-like stress gradient with a pronounced surface tensile stress of about 500 MPa is interpreted by the temperature gradient mechanism model. Chemical analysis indicates a formation of reinforcing spherical chromium-metal-oxide nano-dispersoids and demonstrates a possibility for reactive additive manufacturing and microstructural design at the nanoscale, as a remarkable attribute of the deposition process. Finally, the study shows that the novel approach represents an effective tool to combine dissimilar metallic alloys into unique bionic hierarchical microstructures with possible synergetic properties.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Additive Manufacturing
ISSN
2214-8604
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
„101027-1“-„101027-12“
Kód UT WoS článku
000522928600053
EID výsledku v databázi Scopus
—