Near-Atomic-Thick Bismuthene Oxide Microsheets for Flexible Aqueous Anodes: Boosted Performance upon 3D -> 2D Transition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU143759" target="_blank" >RIV/00216305:26620/20:PU143759 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/20:43920520
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsami.0c16802" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.0c16802</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.0c16802" target="_blank" >10.1021/acsami.0c16802</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Near-Atomic-Thick Bismuthene Oxide Microsheets for Flexible Aqueous Anodes: Boosted Performance upon 3D -> 2D Transition
Popis výsledku v původním jazyce
Aqueous batteries provide safety, but they usually suffer from low energy and short lifetimes, limiting their use for large-scale energy storage. Two-dimensional materials with infinite lateral dimensions have inherent properties such as high surface area and remarkable power density and cycling stability that are shown to be critical for the next generation of energy storage systems. Here, ultrathin bismuthene oxide with a large aspect ratio is studied as an anode material for rechargeable aqueous metal-ion batteries. The metal oxides are prepared via a novel electrochemical system allowing for a smooth, high-quality transition of bismuthene to bismuthene oxide in a short time. This anodic system is shown to overcome major limiting factors of such batteries, including low capacity and irreversible and unstable redox reactions in aqueous electrolytes. The essential energy storage properties of two-dimensional (2D) microsheets, without the addition of conductive additives and binders, are compared with those of the corresponding three-dimensional (3D) structures. Notably, the battery performance of 2D microsheets is significantly better than that of nanoparticles from all examined aspects, including power density and potential and cycling stability, while exhibiting a capacity density close to their theoretical value. Moreover, 2D microsheets have shown impressive mechanical flexibility related to the ultrathin thickness of individual microsheets and strong interaction between them after film deposition. Combining the excellent energy storage properties of bismuthene oxide, the simple electrode preparation procedure, the inherent flexing characteristic, and the nontoxicity of both the battery material and the electrolyte makes this 2D material an exceptional candidate for large-scale wearable green electronics.
Název v anglickém jazyce
Near-Atomic-Thick Bismuthene Oxide Microsheets for Flexible Aqueous Anodes: Boosted Performance upon 3D -> 2D Transition
Popis výsledku anglicky
Aqueous batteries provide safety, but they usually suffer from low energy and short lifetimes, limiting their use for large-scale energy storage. Two-dimensional materials with infinite lateral dimensions have inherent properties such as high surface area and remarkable power density and cycling stability that are shown to be critical for the next generation of energy storage systems. Here, ultrathin bismuthene oxide with a large aspect ratio is studied as an anode material for rechargeable aqueous metal-ion batteries. The metal oxides are prepared via a novel electrochemical system allowing for a smooth, high-quality transition of bismuthene to bismuthene oxide in a short time. This anodic system is shown to overcome major limiting factors of such batteries, including low capacity and irreversible and unstable redox reactions in aqueous electrolytes. The essential energy storage properties of two-dimensional (2D) microsheets, without the addition of conductive additives and binders, are compared with those of the corresponding three-dimensional (3D) structures. Notably, the battery performance of 2D microsheets is significantly better than that of nanoparticles from all examined aspects, including power density and potential and cycling stability, while exhibiting a capacity density close to their theoretical value. Moreover, 2D microsheets have shown impressive mechanical flexibility related to the ultrathin thickness of individual microsheets and strong interaction between them after film deposition. Combining the excellent energy storage properties of bismuthene oxide, the simple electrode preparation procedure, the inherent flexing characteristic, and the nontoxicity of both the battery material and the electrolyte makes this 2D material an exceptional candidate for large-scale wearable green electronics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26896X" target="_blank" >GX19-26896X: Elektrochemie 2D Nanomateriálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS applied materials & interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
12
Číslo periodika v rámci svazku
50
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
55936-55944
Kód UT WoS článku
000600202300037
EID výsledku v databázi Scopus
2-s2.0-85097761766