Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Error measurement acuracy methodology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU145337" target="_blank" >RIV/00216305:26620/20:PU145337 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Error measurement acuracy methodology

  • Popis výsledku v původním jazyce

    New type of methods allows minimising the geometrical misalignments and they are called self-calibrating algorithms. This algorithm provides theoretically exact reconstruction when linked with the helical geometry, implying images without geometric distortion. CT systems applying such algorithms do not potentially need any additional calibration or even reference measurement. We propose a methodology of testing such a system with a self-calibrating algorithm and helical trajectory. Moreover, the length measurement error is evaluated on both spheres distance error and probing errors. Sphere distance errors are reaching 2/3 of the voxel size. Besides, we show the results for the length measurement error following the VDI/VDE 2630 guideline. The results show that the sphere distance errors has still a systematic error. This stems from the calibration being highly dependent on knowing the average voxel size with sufficient precision. The magnification is given by the self-calibration algorithm and it is associated with the detector pixel size. Therefore, the detector pixel size needs to be specified with precision down to 10 nm. This is below the manufacturing tolerance of the detector, and therefore it needs to be measured for each detector separately. In this paper, we provide a statistical method for obtaining this calibration. With this calibration, we achieve an SD error of ± (18.63 + 2.5L/100), when imaging with a voxel size of about 15μm. In addition to that, we introduce the procedure to evaluate the maximal permissible error calculation on pure statistics based on the length measurement error. Reconstruction Discussion is focused on the stability of reconstruction and the results of individual errors.

  • Název v anglickém jazyce

    Error measurement acuracy methodology

  • Popis výsledku anglicky

    New type of methods allows minimising the geometrical misalignments and they are called self-calibrating algorithms. This algorithm provides theoretically exact reconstruction when linked with the helical geometry, implying images without geometric distortion. CT systems applying such algorithms do not potentially need any additional calibration or even reference measurement. We propose a methodology of testing such a system with a self-calibrating algorithm and helical trajectory. Moreover, the length measurement error is evaluated on both spheres distance error and probing errors. Sphere distance errors are reaching 2/3 of the voxel size. Besides, we show the results for the length measurement error following the VDI/VDE 2630 guideline. The results show that the sphere distance errors has still a systematic error. This stems from the calibration being highly dependent on knowing the average voxel size with sufficient precision. The magnification is given by the self-calibration algorithm and it is associated with the detector pixel size. Therefore, the detector pixel size needs to be specified with precision down to 10 nm. This is below the manufacturing tolerance of the detector, and therefore it needs to be measured for each detector separately. In this paper, we provide a statistical method for obtaining this calibration. With this calibration, we achieve an SD error of ± (18.63 + 2.5L/100), when imaging with a voxel size of about 15μm. In addition to that, we introduce the procedure to evaluate the maximal permissible error calculation on pure statistics based on the length measurement error. Reconstruction Discussion is focused on the stability of reconstruction and the results of individual errors.

Klasifikace

  • Druh

    V<sub>souhrn</sub> - Souhrnná výzkumná zpráva

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN01000008" target="_blank" >TN01000008: Centrum elektronové a fotonové optiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Počet stran výsledku

    5

  • Místo vydání

    Neuveden

  • Název nakladatele resp. objednatele

    Neuveden

  • Verze