Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU140880" target="_blank" >RIV/00216305:26620/21:PU140880 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.nature.com/articles/s41467-021-22600-7" target="_blank" >https://www.nature.com/articles/s41467-021-22600-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41467-021-22600-7" target="_blank" >10.1038/s41467-021-22600-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
Popis výsledku v původním jazyce
Skyrmions and antiskyrmions are topologically protected spin structures with opposite vorticities. Particularly in coexisting phases, these two types of magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materials, until now antiskyrmions were exclusive to materials with D2d symmetry. In this work, we show first and second-order antiskyrmions stabilized by magnetic dipole–dipole interaction in Fe/Gd-based multilayers. We modify the magnetic properties of the multilayers by Ir insertion layers. Using Lorentz transmission electron microscopy imaging, we observe coexisting antiskyrmions, Bloch skyrmions, and type-2 bubbles and determine the range of material properties and magnetic fields where the different spin objects form and dissipate. We perform micromagnetic simulations to obtain more insight into the studied system and conclude that the reduction of saturation magnetization and uniaxial magnetic anisotropy leads to the existence of this zoo of different spin objects and that they are primarily stabilized by dipolar interaction.
Název v anglickém jazyce
Dipolar-stabilized first and second-order antiskyrmions in ferrimagnetic multilayers
Popis výsledku anglicky
Skyrmions and antiskyrmions are topologically protected spin structures with opposite vorticities. Particularly in coexisting phases, these two types of magnetic quasi-particles may show fascinating physics and potential for spintronic devices. While skyrmions are observed in a wide range of materials, until now antiskyrmions were exclusive to materials with D2d symmetry. In this work, we show first and second-order antiskyrmions stabilized by magnetic dipole–dipole interaction in Fe/Gd-based multilayers. We modify the magnetic properties of the multilayers by Ir insertion layers. Using Lorentz transmission electron microscopy imaging, we observe coexisting antiskyrmions, Bloch skyrmions, and type-2 bubbles and determine the range of material properties and magnetic fields where the different spin objects form and dissipate. We perform micromagnetic simulations to obtain more insight into the studied system and conclude that the reduction of saturation magnetization and uniaxial magnetic anisotropy leads to the existence of this zoo of different spin objects and that they are primarily stabilized by dipolar interaction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NATURE COMMUNICATIONS
ISSN
2041-1723
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000687305500046
EID výsledku v databázi Scopus
2-s2.0-85105543889