Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU141031" target="_blank" >RIV/00216305:26620/21:PU141031 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/21:43919680

  • Výsledek na webu

    <a href="https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR06479C#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR06479C#!divAbstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d0nr06479c" target="_blank" >10.1039/d0nr06479c</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application

  • Popis výsledku v původním jazyce

    The 3D-printing technology offers an innovative approach to develop energy storage devices because of its ability to create facile and low cost customized electrodes for modern electronics. Among the recently explored 2D nanomaterials beyond graphene, molybdenum sulfide (MoSx) has been found as a promising material for electrochemical energy storage devices. In this study, a nanocarbon-based conductive filament was 3D-printed and then activated by solvent treatment, followed by electrodeposition of MoSx on the printed nanocarbon electrode's surface. The conductive nanocarbon fibers allow a coaxial deposition of a thin MoSx layer. The MoSx layer contributes to pseudocapacitive charge storage mechanisms to obtain higher capacitances. In a three-electrode test system with 1 M H2SO4 as electrolyte, the MoSx coated 3D-printed electrode (MoSx@3D-PE) electrode shows a capacitance of 27 mF cm(-2) at the scan rate of 10 mV s(-1), and a capacitance of 11.6 mF cm(-2) at the current density of 0.13 mA cm(-2). Extending to solid-state supercapacitor (SS-SC), the cells were fabricated using the MoSx@3D-PE with different designs and polyvinyl alcohol (PVA)/H2SO4 as gel electrolyte. An interdigital-shaped SS-SC provided a specific capacitance of 4.15 mF cm(-2) at a current density of 0.05 mA cm(-2). Moreover, it showed a stable cycle life where 10% capacitance loss was found after 10 000 cycles. Briefly, this study reports the integration of 3D-printing and room-temperature electrodeposition techniques allowing a simple way of fabricating customized free-standing 3D-electrodes for use in SC applications.

  • Název v anglickém jazyce

    Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application

  • Popis výsledku anglicky

    The 3D-printing technology offers an innovative approach to develop energy storage devices because of its ability to create facile and low cost customized electrodes for modern electronics. Among the recently explored 2D nanomaterials beyond graphene, molybdenum sulfide (MoSx) has been found as a promising material for electrochemical energy storage devices. In this study, a nanocarbon-based conductive filament was 3D-printed and then activated by solvent treatment, followed by electrodeposition of MoSx on the printed nanocarbon electrode's surface. The conductive nanocarbon fibers allow a coaxial deposition of a thin MoSx layer. The MoSx layer contributes to pseudocapacitive charge storage mechanisms to obtain higher capacitances. In a three-electrode test system with 1 M H2SO4 as electrolyte, the MoSx coated 3D-printed electrode (MoSx@3D-PE) electrode shows a capacitance of 27 mF cm(-2) at the scan rate of 10 mV s(-1), and a capacitance of 11.6 mF cm(-2) at the current density of 0.13 mA cm(-2). Extending to solid-state supercapacitor (SS-SC), the cells were fabricated using the MoSx@3D-PE with different designs and polyvinyl alcohol (PVA)/H2SO4 as gel electrolyte. An interdigital-shaped SS-SC provided a specific capacitance of 4.15 mF cm(-2) at a current density of 0.05 mA cm(-2). Moreover, it showed a stable cycle life where 10% capacitance loss was found after 10 000 cycles. Briefly, this study reports the integration of 3D-printing and room-temperature electrodeposition techniques allowing a simple way of fabricating customized free-standing 3D-electrodes for use in SC applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    NANOSCALE

  • ISSN

    2040-3364

  • e-ISSN

    2040-3372

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

    5744-5756

  • Kód UT WoS článku

    000632611200009

  • EID výsledku v databázi Scopus