Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU141031" target="_blank" >RIV/00216305:26620/21:PU141031 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/21:43919680
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR06479C#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/NR/D0NR06479C#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d0nr06479c" target="_blank" >10.1039/d0nr06479c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application
Popis výsledku v původním jazyce
The 3D-printing technology offers an innovative approach to develop energy storage devices because of its ability to create facile and low cost customized electrodes for modern electronics. Among the recently explored 2D nanomaterials beyond graphene, molybdenum sulfide (MoSx) has been found as a promising material for electrochemical energy storage devices. In this study, a nanocarbon-based conductive filament was 3D-printed and then activated by solvent treatment, followed by electrodeposition of MoSx on the printed nanocarbon electrode's surface. The conductive nanocarbon fibers allow a coaxial deposition of a thin MoSx layer. The MoSx layer contributes to pseudocapacitive charge storage mechanisms to obtain higher capacitances. In a three-electrode test system with 1 M H2SO4 as electrolyte, the MoSx coated 3D-printed electrode (MoSx@3D-PE) electrode shows a capacitance of 27 mF cm(-2) at the scan rate of 10 mV s(-1), and a capacitance of 11.6 mF cm(-2) at the current density of 0.13 mA cm(-2). Extending to solid-state supercapacitor (SS-SC), the cells were fabricated using the MoSx@3D-PE with different designs and polyvinyl alcohol (PVA)/H2SO4 as gel electrolyte. An interdigital-shaped SS-SC provided a specific capacitance of 4.15 mF cm(-2) at a current density of 0.05 mA cm(-2). Moreover, it showed a stable cycle life where 10% capacitance loss was found after 10 000 cycles. Briefly, this study reports the integration of 3D-printing and room-temperature electrodeposition techniques allowing a simple way of fabricating customized free-standing 3D-electrodes for use in SC applications.
Název v anglickém jazyce
Free-standing electrochemically coated MoSx based 3D-printed nanocarbon electrode for solid-state supercapacitor application
Popis výsledku anglicky
The 3D-printing technology offers an innovative approach to develop energy storage devices because of its ability to create facile and low cost customized electrodes for modern electronics. Among the recently explored 2D nanomaterials beyond graphene, molybdenum sulfide (MoSx) has been found as a promising material for electrochemical energy storage devices. In this study, a nanocarbon-based conductive filament was 3D-printed and then activated by solvent treatment, followed by electrodeposition of MoSx on the printed nanocarbon electrode's surface. The conductive nanocarbon fibers allow a coaxial deposition of a thin MoSx layer. The MoSx layer contributes to pseudocapacitive charge storage mechanisms to obtain higher capacitances. In a three-electrode test system with 1 M H2SO4 as electrolyte, the MoSx coated 3D-printed electrode (MoSx@3D-PE) electrode shows a capacitance of 27 mF cm(-2) at the scan rate of 10 mV s(-1), and a capacitance of 11.6 mF cm(-2) at the current density of 0.13 mA cm(-2). Extending to solid-state supercapacitor (SS-SC), the cells were fabricated using the MoSx@3D-PE with different designs and polyvinyl alcohol (PVA)/H2SO4 as gel electrolyte. An interdigital-shaped SS-SC provided a specific capacitance of 4.15 mF cm(-2) at a current density of 0.05 mA cm(-2). Moreover, it showed a stable cycle life where 10% capacitance loss was found after 10 000 cycles. Briefly, this study reports the integration of 3D-printing and room-temperature electrodeposition techniques allowing a simple way of fabricating customized free-standing 3D-electrodes for use in SC applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NANOSCALE
ISSN
2040-3364
e-ISSN
2040-3372
Svazek periodika
13
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
5744-5756
Kód UT WoS článku
000632611200009
EID výsledku v databázi Scopus
—