Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Physics-informed ML models for processing of spectroscopic data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU141534" target="_blank" >RIV/00216305:26620/21:PU141534 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26620/21:PU142524

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Physics-informed ML models for processing of spectroscopic data

  • Popis výsledku v původním jazyce

    Massive adoption of machine learning (ML) techniques in spectroscopy brought entirely new possibilities in analytical performance for applications, and also for basic research. However, several problems emerged, e.g. ML models are often utilized as “black-boxes”, or considerably overtrained. Another issue is a blind transition of successful models (architecture, parameters) from distinct applications (e.g. image processing) to spectroscopic tasks, without taking into account the properties of data. We study the influence of (spectroscopic) data properties and incorporate them into ML models in form of weight initializations, specific parameter penalizations, and invariances. This leads to an increased analytical performance of models and better interpretability.

  • Název v anglickém jazyce

    Physics-informed ML models for processing of spectroscopic data

  • Popis výsledku anglicky

    Massive adoption of machine learning (ML) techniques in spectroscopy brought entirely new possibilities in analytical performance for applications, and also for basic research. However, several problems emerged, e.g. ML models are often utilized as “black-boxes”, or considerably overtrained. Another issue is a blind transition of successful models (architecture, parameters) from distinct applications (e.g. image processing) to spectroscopic tasks, without taking into account the properties of data. We study the influence of (spectroscopic) data properties and incorporate them into ML models in form of weight initializations, specific parameter penalizations, and invariances. This leads to an increased analytical performance of models and better interpretability.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Kvalitní interní granty VUT</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů