Giant Perpendicular Magnetic Anisotropy Enhancement in MgO-Based Magnetic Tunnel Junction by Using Co/Fe Composite Layer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU142032" target="_blank" >RIV/00216305:26620/21:PU142032 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024017" target="_blank" >https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.024017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevApplied.15.024017" target="_blank" >10.1103/PhysRevApplied.15.024017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Giant Perpendicular Magnetic Anisotropy Enhancement in MgO-Based Magnetic Tunnel Junction by Using Co/Fe Composite Layer
Popis výsledku v původním jazyce
Magnetic tunnel junctions with perpendicular anisotropy form the basis of the spin-transfer torque magnetic random-access memory (STT MRAM), which is nonvolatile, fast, dense, and has quasi-infinite write endurance and low power consumption. Based on density-functional-theory (DFT) calculations, we propose an alternative design of magnetic tunnel junctions comprising Fe(n)Co(m)Fe(n)|MgO storage layers [n and m denote the number of monolayers (ML)] with greatly enhanced perpendicular magnetic anisotropy (PMA) up to several mJ/m(2), leveraging the interfacial perpendicular anisotropy of Fe vertical bar MgO along with a strain-induced bulk PMA discovered within bcc Co. This giant enhancement dominates the demagnetizing energy when increasing the film thickness. The tunneling magnetoresistance (TMR) estimated from the Julliere model is comparable with that of the pure Fe vertical bar MgO case. We discuss the advantages and pitfalls of a real-life fabrication of the structure and propose the Fe(3ML)Co(4ML)Fe(3ML) as a storage layer for MgO-based STT MRAM cells. The large PMA in strained bcc Co is explained in the framework of second-order perturbation theory by the MgO-imposed strain and consequent changes in the energies of d(yz) and d(z2) minority-spin bands.
Název v anglickém jazyce
Giant Perpendicular Magnetic Anisotropy Enhancement in MgO-Based Magnetic Tunnel Junction by Using Co/Fe Composite Layer
Popis výsledku anglicky
Magnetic tunnel junctions with perpendicular anisotropy form the basis of the spin-transfer torque magnetic random-access memory (STT MRAM), which is nonvolatile, fast, dense, and has quasi-infinite write endurance and low power consumption. Based on density-functional-theory (DFT) calculations, we propose an alternative design of magnetic tunnel junctions comprising Fe(n)Co(m)Fe(n)|MgO storage layers [n and m denote the number of monolayers (ML)] with greatly enhanced perpendicular magnetic anisotropy (PMA) up to several mJ/m(2), leveraging the interfacial perpendicular anisotropy of Fe vertical bar MgO along with a strain-induced bulk PMA discovered within bcc Co. This giant enhancement dominates the demagnetizing energy when increasing the film thickness. The tunneling magnetoresistance (TMR) estimated from the Julliere model is comparable with that of the pure Fe vertical bar MgO case. We discuss the advantages and pitfalls of a real-life fabrication of the structure and propose the Fe(3ML)Co(4ML)Fe(3ML) as a storage layer for MgO-based STT MRAM cells. The large PMA in strained bcc Co is explained in the framework of second-order perturbation theory by the MgO-imposed strain and consequent changes in the energies of d(yz) and d(z2) minority-spin bands.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Applied
ISSN
2331-7019
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
„024017-1“-„024017-8“
Kód UT WoS článku
000628653800001
EID výsledku v databázi Scopus
2-s2.0-85100901283