Volumetric Double-Layer Charge Storage in Composites Based on Conducting Polymer PEDOT and Cellulose
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU142123" target="_blank" >RIV/00216305:26620/21:PU142123 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsaem.1c01850" target="_blank" >https://pubs.acs.org/doi/10.1021/acsaem.1c01850</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsaem.1c01850" target="_blank" >10.1021/acsaem.1c01850</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Volumetric Double-Layer Charge Storage in Composites Based on Conducting Polymer PEDOT and Cellulose
Popis výsledku v původním jazyce
Energy storage technology incorporating conducting polymers as the active component in electrode structures, in part based on natural materials, is a promising strategy toward a sustainable future. Electronic and ionic charge transport in poly(3,4-ethylenedioxythiophene) (PEDOT) provides fundamentals for energy storage, governed by volumetric PEDOT:counterion double layers. Despite extensive experimental investigations, a solid understanding of the capacitance in PEDOT-based nanocomposites remains unsatisfactory. Here, we report on the charge storage mechanism in PEDOT composited with cellulose nanofibrils (termed as "power paper") from three different perspectives: experimental measurements, density functional theory atomistic simulations, and device-scale simulations based on the NernstPlanck-Poisson equations. The capacitance of the power paper was investigated by varying the film thickness, charging currents, and electrolyte ion concentrations. We show that the volumetric capacitance of the power paper originates from electrostatic molecular double layers defined at atomistic scales, formed between holes, localized in the PEDOT backbone, and their counterions. Experimental galvanostatic cycling characteristics of the power paper is well reproduced within the electrostatic Nernst-PlanckPoisson model. The difference between the specific capacitance and the intrinsic volumetric capacitance is also outlined. Substantial oxygen reduction reactions were identified and recorded in situ in the vicinity of the power paper surface at negative potentials. Purging of dissolved oxygen from the electrolyte leads to the elimination of currents originating from the oxygen reduction reactions and allows us to obtain well-defined electrostatic-capacitive behavior (box-shaped cyclic voltammetry and triangular galvanostatic charge-discharge characteristics) at a large operational potential window from -0.6 V to +0.6 V. The obtained results reveal that the fundamental charge storage
Název v anglickém jazyce
Volumetric Double-Layer Charge Storage in Composites Based on Conducting Polymer PEDOT and Cellulose
Popis výsledku anglicky
Energy storage technology incorporating conducting polymers as the active component in electrode structures, in part based on natural materials, is a promising strategy toward a sustainable future. Electronic and ionic charge transport in poly(3,4-ethylenedioxythiophene) (PEDOT) provides fundamentals for energy storage, governed by volumetric PEDOT:counterion double layers. Despite extensive experimental investigations, a solid understanding of the capacitance in PEDOT-based nanocomposites remains unsatisfactory. Here, we report on the charge storage mechanism in PEDOT composited with cellulose nanofibrils (termed as "power paper") from three different perspectives: experimental measurements, density functional theory atomistic simulations, and device-scale simulations based on the NernstPlanck-Poisson equations. The capacitance of the power paper was investigated by varying the film thickness, charging currents, and electrolyte ion concentrations. We show that the volumetric capacitance of the power paper originates from electrostatic molecular double layers defined at atomistic scales, formed between holes, localized in the PEDOT backbone, and their counterions. Experimental galvanostatic cycling characteristics of the power paper is well reproduced within the electrostatic Nernst-PlanckPoisson model. The difference between the specific capacitance and the intrinsic volumetric capacitance is also outlined. Substantial oxygen reduction reactions were identified and recorded in situ in the vicinity of the power paper surface at negative potentials. Purging of dissolved oxygen from the electrolyte leads to the elimination of currents originating from the oxygen reduction reactions and allows us to obtain well-defined electrostatic-capacitive behavior (box-shaped cyclic voltammetry and triangular galvanostatic charge-discharge characteristics) at a large operational potential window from -0.6 V to +0.6 V. The obtained results reveal that the fundamental charge storage
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS APPLIED ENERGY MATERIALS
ISSN
2574-0962
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
8629-8640
Kód UT WoS článku
000688250200124
EID výsledku v databázi Scopus
2-s2.0-85113764612