Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F21%3APU144290" target="_blank" >RIV/00216305:26620/21:PU144290 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://linkinghub.elsevier.com/retrieve/pii/S1359645421008491" target="_blank" >https://linkinghub.elsevier.com/retrieve/pii/S1359645421008491</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.actamat.2021.117470" target="_blank" >10.1016/j.actamat.2021.117470</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries

  • Popis výsledku v původním jazyce

    The multi-principal element CrMnFeCoNi alloy, which solidifies as a single-phase solid solution with the face-centered cubic (fcc) structure, is thermally stable above 900 degrees C but is known to decompose into multiple phases at temperatures between 450 and 800 degrees C. Although the thermal stability of Cr-Mn-FeCo-Ni alloys can be altered by changing the composition, there is limited knowledge of the role of microstructure on the kinetics of precipitation from the supersaturated primary fcc phase. To fill this gap, we compared the thermal stability of monocrystalline and polycrystalline thin films of the equiatomic CrMnFeCoNi alloy during synthesis and after post-deposition annealing. At the processing temperature of 700 degrees C, the polycrystalline film undergoes substantial phase decomposition in 3 min, consistent with earlier results that a bulk alloy of similar composition decomposes into multiple phases at this temperature. In contrast, the monocrystalline film of the same composition remains single-phase both during synthesis and subsequent annealing at 700 degrees C for 5 h. X-ray diffraction investigations together with comprehensive transmission electron microscopy analysis revealed that the decomposition of the supersaturated primary phase is related to the presence of structural defects, in particular grain boundaries, which promote diffusion of Cr and Mn and subsequently destabilize the primary solid solution. Correspondingly, the absence of high-diffusivity grain boundaries in the monocrystalline alloy prevents its primary phase from decomposing. The fundamental role of grain boundaries on precipitation kinetics, manifested through the short circuiting of sluggish bulk diffusion in entropy-stabilized multi-principal element alloys, is discussed together with the possibility of controlling their thermal stability by microstructural design. (c) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access arti

  • Název v anglickém jazyce

    Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries

  • Popis výsledku anglicky

    The multi-principal element CrMnFeCoNi alloy, which solidifies as a single-phase solid solution with the face-centered cubic (fcc) structure, is thermally stable above 900 degrees C but is known to decompose into multiple phases at temperatures between 450 and 800 degrees C. Although the thermal stability of Cr-Mn-FeCo-Ni alloys can be altered by changing the composition, there is limited knowledge of the role of microstructure on the kinetics of precipitation from the supersaturated primary fcc phase. To fill this gap, we compared the thermal stability of monocrystalline and polycrystalline thin films of the equiatomic CrMnFeCoNi alloy during synthesis and after post-deposition annealing. At the processing temperature of 700 degrees C, the polycrystalline film undergoes substantial phase decomposition in 3 min, consistent with earlier results that a bulk alloy of similar composition decomposes into multiple phases at this temperature. In contrast, the monocrystalline film of the same composition remains single-phase both during synthesis and subsequent annealing at 700 degrees C for 5 h. X-ray diffraction investigations together with comprehensive transmission electron microscopy analysis revealed that the decomposition of the supersaturated primary phase is related to the presence of structural defects, in particular grain boundaries, which promote diffusion of Cr and Mn and subsequently destabilize the primary solid solution. Correspondingly, the absence of high-diffusivity grain boundaries in the monocrystalline alloy prevents its primary phase from decomposing. The fundamental role of grain boundaries on precipitation kinetics, manifested through the short circuiting of sluggish bulk diffusion in entropy-stabilized multi-principal element alloys, is discussed together with the possibility of controlling their thermal stability by microstructural design. (c) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access arti

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta materialia

  • ISSN

    1359-6454

  • e-ISSN

    1873-2453

  • Svazek periodika

    223

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    „117470-1“-„117470-8“

  • Kód UT WoS článku

    000721997700001

  • EID výsledku v databázi Scopus