Laser-Driven Wireless Deep Brain Stimulation using Temporal Interference and Organic Electrolytic Photocapacitors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU144964" target="_blank" >RIV/00216305:26620/22:PU144964 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200691" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200691</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202200691" target="_blank" >10.1002/adfm.202200691</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Laser-Driven Wireless Deep Brain Stimulation using Temporal Interference and Organic Electrolytic Photocapacitors
Popis výsledku v původním jazyce
Deep brain stimulation (DBS) is a technique commonly used both in clinical and fundamental neurosciences. Classically, brain stimulation requires an implanted and wired electrode system to deliver stimulation directly to the target area. Although techniques such as temporal interference (TI) can provide stimulation at depth without involving any implanted electrodes, these methods still rely on a wired apparatus which limits free movement. Herein organic photocapacitors as untethered light-driven electrodes which convert deep-red light into electric current are reported. Pairs of these ultrathin devices can be driven using lasers at two different frequencies to deliver stimulation at depth via temporally interfering fields. This concept of laser TI stimulation using numerical modeling, tests with phantom brain samples, and finally in vivo tests is validated. Wireless organic photocapacitors are placed on the cortex and elicit stimulation in the hippocampus, while not delivering off-target stimulation in the cortex. This laser-driven wireless TI evokes a neuronal response at depth that is comparable to control experiments induced with deep brain stimulation protocols using implanted electrodes. This work shows that a combination of these two techniques-temporal interference and organic electrolytic photocapacitors-provides a reliable way to target brain structures requiring neither deeply implanted electrodes nor tethered stimulator devices. The laser TI protocol demonstrated here addresses two of the most important drawbacks in the field of DBS and thus holds potential to solve many issues in freely moving animal experiments or for clinical chronic therapy application.
Název v anglickém jazyce
Laser-Driven Wireless Deep Brain Stimulation using Temporal Interference and Organic Electrolytic Photocapacitors
Popis výsledku anglicky
Deep brain stimulation (DBS) is a technique commonly used both in clinical and fundamental neurosciences. Classically, brain stimulation requires an implanted and wired electrode system to deliver stimulation directly to the target area. Although techniques such as temporal interference (TI) can provide stimulation at depth without involving any implanted electrodes, these methods still rely on a wired apparatus which limits free movement. Herein organic photocapacitors as untethered light-driven electrodes which convert deep-red light into electric current are reported. Pairs of these ultrathin devices can be driven using lasers at two different frequencies to deliver stimulation at depth via temporally interfering fields. This concept of laser TI stimulation using numerical modeling, tests with phantom brain samples, and finally in vivo tests is validated. Wireless organic photocapacitors are placed on the cortex and elicit stimulation in the hippocampus, while not delivering off-target stimulation in the cortex. This laser-driven wireless TI evokes a neuronal response at depth that is comparable to control experiments induced with deep brain stimulation protocols using implanted electrodes. This work shows that a combination of these two techniques-temporal interference and organic electrolytic photocapacitors-provides a reliable way to target brain structures requiring neither deeply implanted electrodes nor tethered stimulator devices. The laser TI protocol demonstrated here addresses two of the most important drawbacks in the field of DBS and thus holds potential to solve many issues in freely moving animal experiments or for clinical chronic therapy application.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADVANCED FUNCTIONAL MATERIALS
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
32
Číslo periodika v rámci svazku
33
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
„2200691-1“-„2200691-8“
Kód UT WoS článku
000804989000001
EID výsledku v databázi Scopus
2-s2.0-85131179700