Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Laser-Driven Wireless Deep Brain Stimulation using Temporal Interference and Organic Electrolytic Photocapacitors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU144964" target="_blank" >RIV/00216305:26620/22:PU144964 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200691" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adfm.202200691</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.202200691" target="_blank" >10.1002/adfm.202200691</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Laser-Driven Wireless Deep Brain Stimulation using Temporal Interference and Organic Electrolytic Photocapacitors

  • Popis výsledku v původním jazyce

    Deep brain stimulation (DBS) is a technique commonly used both in clinical and fundamental neurosciences. Classically, brain stimulation requires an implanted and wired electrode system to deliver stimulation directly to the target area. Although techniques such as temporal interference (TI) can provide stimulation at depth without involving any implanted electrodes, these methods still rely on a wired apparatus which limits free movement. Herein organic photocapacitors as untethered light-driven electrodes which convert deep-red light into electric current are reported. Pairs of these ultrathin devices can be driven using lasers at two different frequencies to deliver stimulation at depth via temporally interfering fields. This concept of laser TI stimulation using numerical modeling, tests with phantom brain samples, and finally in vivo tests is validated. Wireless organic photocapacitors are placed on the cortex and elicit stimulation in the hippocampus, while not delivering off-target stimulation in the cortex. This laser-driven wireless TI evokes a neuronal response at depth that is comparable to control experiments induced with deep brain stimulation protocols using implanted electrodes. This work shows that a combination of these two techniques-temporal interference and organic electrolytic photocapacitors-provides a reliable way to target brain structures requiring neither deeply implanted electrodes nor tethered stimulator devices. The laser TI protocol demonstrated here addresses two of the most important drawbacks in the field of DBS and thus holds potential to solve many issues in freely moving animal experiments or for clinical chronic therapy application.

  • Název v anglickém jazyce

    Laser-Driven Wireless Deep Brain Stimulation using Temporal Interference and Organic Electrolytic Photocapacitors

  • Popis výsledku anglicky

    Deep brain stimulation (DBS) is a technique commonly used both in clinical and fundamental neurosciences. Classically, brain stimulation requires an implanted and wired electrode system to deliver stimulation directly to the target area. Although techniques such as temporal interference (TI) can provide stimulation at depth without involving any implanted electrodes, these methods still rely on a wired apparatus which limits free movement. Herein organic photocapacitors as untethered light-driven electrodes which convert deep-red light into electric current are reported. Pairs of these ultrathin devices can be driven using lasers at two different frequencies to deliver stimulation at depth via temporally interfering fields. This concept of laser TI stimulation using numerical modeling, tests with phantom brain samples, and finally in vivo tests is validated. Wireless organic photocapacitors are placed on the cortex and elicit stimulation in the hippocampus, while not delivering off-target stimulation in the cortex. This laser-driven wireless TI evokes a neuronal response at depth that is comparable to control experiments induced with deep brain stimulation protocols using implanted electrodes. This work shows that a combination of these two techniques-temporal interference and organic electrolytic photocapacitors-provides a reliable way to target brain structures requiring neither deeply implanted electrodes nor tethered stimulator devices. The laser TI protocol demonstrated here addresses two of the most important drawbacks in the field of DBS and thus holds potential to solve many issues in freely moving animal experiments or for clinical chronic therapy application.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10610 - Biophysics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ADVANCED FUNCTIONAL MATERIALS

  • ISSN

    1616-301X

  • e-ISSN

    1616-3028

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    33

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

    „2200691-1“-„2200691-8“

  • Kód UT WoS článku

    000804989000001

  • EID výsledku v databázi Scopus

    2-s2.0-85131179700