Layered MAX phase electrocatalyst activity is driven by only a few hot spots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145142" target="_blank" >RIV/00216305:26620/22:PU145142 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2022/TA/D1TA06419C" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2022/TA/D1TA06419C</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d1ta06419c" target="_blank" >10.1039/d1ta06419c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Layered MAX phase electrocatalyst activity is driven by only a few hot spots
Popis výsledku v původním jazyce
Layered metal carbides, MAX phases, have gained significant interest in the scientific community due to their electrocatalytic and electrochemical properties. Among various MAX phases, Mo2TiAlC2 has driven much attention because of its enhanced electrochemical activity for the hydrogen evolution reaction (HER). So far, the macroscopic HER performance has been investigated by traditional electrochemical techniques such as voltammetry. However, the knowledge of the microscopic electrocatalytic behaviour, i.e., distribution and location of highly active sites for HER is still limited. Herein, the microscopic analysis of the MAX phase microparticles shows that their electrocatalysis is driven by a few particles with an outstanding catalytic activity towards hydrogen evolution. Such observation is of high importance for design and applications of electrocatalysts in general.
Název v anglickém jazyce
Layered MAX phase electrocatalyst activity is driven by only a few hot spots
Popis výsledku anglicky
Layered metal carbides, MAX phases, have gained significant interest in the scientific community due to their electrocatalytic and electrochemical properties. Among various MAX phases, Mo2TiAlC2 has driven much attention because of its enhanced electrochemical activity for the hydrogen evolution reaction (HER). So far, the macroscopic HER performance has been investigated by traditional electrochemical techniques such as voltammetry. However, the knowledge of the microscopic electrocatalytic behaviour, i.e., distribution and location of highly active sites for HER is still limited. Herein, the microscopic analysis of the MAX phase microparticles shows that their electrocatalysis is driven by a few particles with an outstanding catalytic activity towards hydrogen evolution. Such observation is of high importance for design and applications of electrocatalysts in general.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
2050-7496
Svazek periodika
10
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
3206-3215
Kód UT WoS článku
000743635000001
EID výsledku v databázi Scopus
2-s2.0-85124516631