Role of Phase Stabilization and Surface Orientation in 4,4 '-Biphenyl-Dicarboxylic Acid Self-Assembly and Transformation on Silver Substrates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145650" target="_blank" >RIV/00216305:26620/22:PU145650 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10456671
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.2c02538" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.2c02538</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.2c02538" target="_blank" >10.1021/acs.jpcc.2c02538</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Role of Phase Stabilization and Surface Orientation in 4,4 '-Biphenyl-Dicarboxylic Acid Self-Assembly and Transformation on Silver Substrates
Popis výsledku v původním jazyce
Molecular functionalization of nanoparticles and metallic substrates can be used to tune their properties for specific applications. However, polycrystalline substrates and nanoparticles exhibit surface planes with distinct crystallographic orientations. Therefore, the development of reliable strategies for molecular functionalization requires knowledge of the role of the surface plane orientation in the growth kinetics, structure, and properties of the molecular layer. Here, we apply a combination of low-energy electron microscopy and diffraction, scanning tunneling microscopy, and photoelectron spectroscopy to investigate the self-assembly of 4,4'-biphenyl-dicarboxylic acid (BDA) on Ag(111) and critically discuss the difference to Ag(100). The structural motifs for intact and fully deprotonated BDA are similar on both surfaces, however, the intermediate phases comprising partially deprotonated BDA differ in structure and chemical composition. A real-time view of the phase transformations enables us to present a generalized picture of the phase transformations between the self-assembled molecular phases on the surfaces and underline important features such as the phase stabilization of the chemical composition and the mechanism of the related burst transformation. The influence of the substrate orientation on the structure of molecular layers and phase transformations provides the necessary background for developing functionalization strategies of the substrates displaying multiple surface planes and kinetic models for the growth near thermodynamic equilibrium.
Název v anglickém jazyce
Role of Phase Stabilization and Surface Orientation in 4,4 '-Biphenyl-Dicarboxylic Acid Self-Assembly and Transformation on Silver Substrates
Popis výsledku anglicky
Molecular functionalization of nanoparticles and metallic substrates can be used to tune their properties for specific applications. However, polycrystalline substrates and nanoparticles exhibit surface planes with distinct crystallographic orientations. Therefore, the development of reliable strategies for molecular functionalization requires knowledge of the role of the surface plane orientation in the growth kinetics, structure, and properties of the molecular layer. Here, we apply a combination of low-energy electron microscopy and diffraction, scanning tunneling microscopy, and photoelectron spectroscopy to investigate the self-assembly of 4,4'-biphenyl-dicarboxylic acid (BDA) on Ag(111) and critically discuss the difference to Ag(100). The structural motifs for intact and fully deprotonated BDA are similar on both surfaces, however, the intermediate phases comprising partially deprotonated BDA differ in structure and chemical composition. A real-time view of the phase transformations enables us to present a generalized picture of the phase transformations between the self-assembled molecular phases on the surfaces and underline important features such as the phase stabilization of the chemical composition and the mechanism of the related burst transformation. The influence of the substrate orientation on the structure of molecular layers and phase transformations provides the necessary background for developing functionalization strategies of the substrates displaying multiple surface planes and kinetic models for the growth near thermodynamic equilibrium.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C (web)
ISSN
1932-7447
e-ISSN
1932-7455
Svazek periodika
126
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
9989-9997
Kód UT WoS článku
000813485300001
EID výsledku v databázi Scopus
2-s2.0-85132104759