Tailoring interface epitaxy and magnetism in La1-xSrxMnO3/SrTiO3 heterostructures via temperature-driven defect engineering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147308" target="_blank" >RIV/00216305:26620/22:PU147308 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/5.0095406" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0095406</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0095406" target="_blank" >10.1063/5.0095406</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tailoring interface epitaxy and magnetism in La1-xSrxMnO3/SrTiO3 heterostructures via temperature-driven defect engineering
Popis výsledku v původním jazyce
Defect engineering of La1-xSrxMnO3 (LSMO)-a strongly correlated oxide displaying half metallicity and ferromagnetism above room temperature-has been the focus of a long-standing quest aimed at the exploitation of this material as a functional building block for memory storage and spintronic applications. Here, we discuss the correlation between structural defects and magnetism in La1-xSrxMnO3/SrTiO3 (LSMO/STO) epitaxial heterostructures as a function of growth temperature and post-deposition annealing. Upon increasing the growth temperature from 500 to 700 degrees C at a fixed oxygen partial pressure of 0.007 mbar, the sputter-deposited epitaxial LSMO films experience a progressive increase in Curie temperature T-c from 110 to 270 K and saturation magnetization M-s from 1.4 to 3.3 mu(B)/u.c. owing to a reduction in oxygen deficiencies. Concurrently, however, growth temperatures above 600 degrees C trigger the formation of off-stoichiometric, dendritic-like SrMoOx islands at the film/substrate interface as a possible aftermath of temperature-driven diffusion of impurities from the STO substrate. Notably, although the interfacial spurious islands cause an increase in sample surface roughness, the heterostructure still preserves high-quality epitaxy. In general, the best compromise in terms of both structural and magnetic properties, comprising high-quality epitaxy, atomically flat surface, and robust ferromagnetism above room temperature, is obtained for LSMO films grown at a relatively low temperature of about 500-540 degrees C followed by a post-deposition annealing treatment at 900 degrees C for 1 h in air. Our study compares effective routes based on temperature-controlled defect engineering to finely tailor the complex interplay between microstructure and magnetism in LSMO thin films. (C) 2022 Author(s).
Název v anglickém jazyce
Tailoring interface epitaxy and magnetism in La1-xSrxMnO3/SrTiO3 heterostructures via temperature-driven defect engineering
Popis výsledku anglicky
Defect engineering of La1-xSrxMnO3 (LSMO)-a strongly correlated oxide displaying half metallicity and ferromagnetism above room temperature-has been the focus of a long-standing quest aimed at the exploitation of this material as a functional building block for memory storage and spintronic applications. Here, we discuss the correlation between structural defects and magnetism in La1-xSrxMnO3/SrTiO3 (LSMO/STO) epitaxial heterostructures as a function of growth temperature and post-deposition annealing. Upon increasing the growth temperature from 500 to 700 degrees C at a fixed oxygen partial pressure of 0.007 mbar, the sputter-deposited epitaxial LSMO films experience a progressive increase in Curie temperature T-c from 110 to 270 K and saturation magnetization M-s from 1.4 to 3.3 mu(B)/u.c. owing to a reduction in oxygen deficiencies. Concurrently, however, growth temperatures above 600 degrees C trigger the formation of off-stoichiometric, dendritic-like SrMoOx islands at the film/substrate interface as a possible aftermath of temperature-driven diffusion of impurities from the STO substrate. Notably, although the interfacial spurious islands cause an increase in sample surface roughness, the heterostructure still preserves high-quality epitaxy. In general, the best compromise in terms of both structural and magnetic properties, comprising high-quality epitaxy, atomically flat surface, and robust ferromagnetism above room temperature, is obtained for LSMO films grown at a relatively low temperature of about 500-540 degrees C followed by a post-deposition annealing treatment at 900 degrees C for 1 h in air. Our study compares effective routes based on temperature-controlled defect engineering to finely tailor the complex interplay between microstructure and magnetism in LSMO thin films. (C) 2022 Author(s).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018110" target="_blank" >LM2018110: Výzkumná infrastruktura CzechNanoLab</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Physics
ISSN
0021-8979
e-ISSN
1089-7550
Svazek periodika
132
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
„“-„“
Kód UT WoS článku
000874530300002
EID výsledku v databázi Scopus
2-s2.0-85138708045