Deformation of Gels with Spherical Auxetic Inclusions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU147319" target="_blank" >RIV/00216305:26620/22:PU147319 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2310-2861/8/11/698" target="_blank" >https://www.mdpi.com/2310-2861/8/11/698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/gels8110698" target="_blank" >10.3390/gels8110698</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deformation of Gels with Spherical Auxetic Inclusions
Popis výsledku v původním jazyce
Auxetic metamaterials possess unnatural properties, such as a negative Poisson's ratio, which offers interesting features when combined with traditional materials. This paper describes the deformation behavior of a gel consisting of spherical auxetic inclusions when embedded in a conventional matrix. The auxetic inclusions and conventional matrix were modeled as spherical objects with a controlled pore shape. The auxetic particle had a reentrant honeycomb, and the conventional phase contained honeycomb-shaped pores. The deformation behavior was simulated using various existing models based on continuum mechanics. For the continuum mechanics models-the simplest of which are the Mori-Tanaka theory and self-consistent field mechanics models-the auxetic particle was homogenized as a solid element with Young's modulus and Poisson's ratio and compared with the common composite gel filled with rigid spheres. The finite element analysis simulations using these models were performed for two cases: (1) a detailed model of one particle and its surroundings in which the structure included the design of both the reentrant and conventional honeycombs; and (2) a multiparticle face-centered cubic lattice where both the classic matrix and auxetic particle were homogenized. Our results suggest that auxetic inclusion-filled gels provide an unsurpassed balance of low density and enhanced stiffness.
Název v anglickém jazyce
Deformation of Gels with Spherical Auxetic Inclusions
Popis výsledku anglicky
Auxetic metamaterials possess unnatural properties, such as a negative Poisson's ratio, which offers interesting features when combined with traditional materials. This paper describes the deformation behavior of a gel consisting of spherical auxetic inclusions when embedded in a conventional matrix. The auxetic inclusions and conventional matrix were modeled as spherical objects with a controlled pore shape. The auxetic particle had a reentrant honeycomb, and the conventional phase contained honeycomb-shaped pores. The deformation behavior was simulated using various existing models based on continuum mechanics. For the continuum mechanics models-the simplest of which are the Mori-Tanaka theory and self-consistent field mechanics models-the auxetic particle was homogenized as a solid element with Young's modulus and Poisson's ratio and compared with the common composite gel filled with rigid spheres. The finite element analysis simulations using these models were performed for two cases: (1) a detailed model of one particle and its surroundings in which the structure included the design of both the reentrant and conventional honeycombs; and (2) a multiparticle face-centered cubic lattice where both the classic matrix and auxetic particle were homogenized. Our results suggest that auxetic inclusion-filled gels provide an unsurpassed balance of low density and enhanced stiffness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19059" target="_blank" >LTAUSA19059: Přírodou inspirované nanokompozitní pěny pro konstrukční aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Gels
ISSN
2310-2861
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
„“-„“
Kód UT WoS článku
000882216500001
EID výsledku v databázi Scopus
2-s2.0-85141797519