Edges of Layered FePSe3 Exhibit Increased Electrochemical and Electrocatalytic Activity Compared to Basal Planes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148300" target="_blank" >RIV/00216305:26620/23:PU148300 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23640/23:43970392
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsaelm.2c01493" target="_blank" >https://pubs.acs.org/doi/10.1021/acsaelm.2c01493</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsaelm.2c01493" target="_blank" >10.1021/acsaelm.2c01493</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edges of Layered FePSe3 Exhibit Increased Electrochemical and Electrocatalytic Activity Compared to Basal Planes
Popis výsledku v původním jazyce
Transition metal trichalcogenphosphites (MPX3), belonging to the class of 2D materials, are potentially viable electrocatalysts for the hydrogen evolution reaction (HER). Many 2D and layered materials exhibit different magnitudes of electrochemical and electrocatalytic activity at their edge and basal sites. To find out whether edges or basal planes are the primary sites for catalytic processes at these compounds, we studied the local electrochemical and electrocatalytic activity of FePSe3, an MPX3 representative that was previously found to be catalytically active. Using scanning electrochemical microscopy, we discovered that electrochemical processes and the HER are occurring at an increased rate at edge-like defects of FePSe3 crystals. We correlate our observations using optical microscopy, confocal laser scanning microscopy, scanning electron microscopy, and electron-dispersive X-ray spectroscopy. These findings have profound implications for the application of these materials for electrochemistry as well as for understanding general rules governing the electrochemical performance of layered compounds.
Název v anglickém jazyce
Edges of Layered FePSe3 Exhibit Increased Electrochemical and Electrocatalytic Activity Compared to Basal Planes
Popis výsledku anglicky
Transition metal trichalcogenphosphites (MPX3), belonging to the class of 2D materials, are potentially viable electrocatalysts for the hydrogen evolution reaction (HER). Many 2D and layered materials exhibit different magnitudes of electrochemical and electrocatalytic activity at their edge and basal sites. To find out whether edges or basal planes are the primary sites for catalytic processes at these compounds, we studied the local electrochemical and electrocatalytic activity of FePSe3, an MPX3 representative that was previously found to be catalytically active. Using scanning electrochemical microscopy, we discovered that electrochemical processes and the HER are occurring at an increased rate at edge-like defects of FePSe3 crystals. We correlate our observations using optical microscopy, confocal laser scanning microscopy, scanning electron microscopy, and electron-dispersive X-ray spectroscopy. These findings have profound implications for the application of these materials for electrochemistry as well as for understanding general rules governing the electrochemical performance of layered compounds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Electronic Materials
ISSN
2637-6113
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
928-934
Kód UT WoS článku
000936598600001
EID výsledku v databázi Scopus
2-s2.0-85148449637