Investigating the thickness-effect of free-standing high aspect-ratio TiO2 nanotube layers on microwave-photoresponse using planar microwave resonators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148456" target="_blank" >RIV/00216305:26620/23:PU148456 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216275:25310/23:39920434
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352940723001026" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352940723001026</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apmt.2023.101832" target="_blank" >10.1016/j.apmt.2023.101832</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigating the thickness-effect of free-standing high aspect-ratio TiO2 nanotube layers on microwave-photoresponse using planar microwave resonators
Popis výsledku v původním jazyce
One-dimensional TiO2 nanotube (TNT) layers are a promising candidate for UV detection due to their distinctive anisotropic geometry which is effective for light harvesting and rapid carrier transport. Here, the photosensitivity efficiency of TNT layers with various thicknesses of 15, 50, 80, and 110 mu m was utilized at a microwave frequency regime by modeling and experimentally. A planar microwave split ring resonator (PMSRR) was designed and fabricated to operate at -8 GHz to study TNT layers by monitoring the scattering parameter (S21) of the PMSRR under a constant UV irradiation power of -96.4 mu W/cm2. According to the results, the 80 mu m thick TNT layers demonstrated the highest resonant amplitude variation for the customized PMSRR. The change of the resonant amplitude was mainly attributed to the conductivity variation contributed by perturbation of trapped electron concentration, as the dominant factor under UV illumination, and their electromagnetic wave interaction. The main advantage of the proposed method of PMSRR for microwave photosensitivity monitoring over the conventional direct current (DC) conductivity measurements is to eliminate the effect of contact resistance between the TNT layers and metal electrodes utilizing the contactless aspect of wave interactions with the TNT layers at microwave regime to perform electrode-less measurements.
Název v anglickém jazyce
Investigating the thickness-effect of free-standing high aspect-ratio TiO2 nanotube layers on microwave-photoresponse using planar microwave resonators
Popis výsledku anglicky
One-dimensional TiO2 nanotube (TNT) layers are a promising candidate for UV detection due to their distinctive anisotropic geometry which is effective for light harvesting and rapid carrier transport. Here, the photosensitivity efficiency of TNT layers with various thicknesses of 15, 50, 80, and 110 mu m was utilized at a microwave frequency regime by modeling and experimentally. A planar microwave split ring resonator (PMSRR) was designed and fabricated to operate at -8 GHz to study TNT layers by monitoring the scattering parameter (S21) of the PMSRR under a constant UV irradiation power of -96.4 mu W/cm2. According to the results, the 80 mu m thick TNT layers demonstrated the highest resonant amplitude variation for the customized PMSRR. The change of the resonant amplitude was mainly attributed to the conductivity variation contributed by perturbation of trapped electron concentration, as the dominant factor under UV illumination, and their electromagnetic wave interaction. The main advantage of the proposed method of PMSRR for microwave photosensitivity monitoring over the conventional direct current (DC) conductivity measurements is to eliminate the effect of contact resistance between the TNT layers and metal electrodes utilizing the contactless aspect of wave interactions with the TNT layers at microwave regime to perform electrode-less measurements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007421" target="_blank" >EF17_048/0007421: Posilování mezioborové spolupráce ve výzkumu nanomateriálů a při studiu jejich účinků na živé organismy</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Materials Today
ISSN
2352-9407
e-ISSN
—
Svazek periodika
32
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
000991219100001
EID výsledku v databázi Scopus
2-s2.0-85153801470