Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148463" target="_blank" >RIV/00216305:26620/23:PU148463 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/2515-7639/acce6f" target="_blank" >https://iopscience.iop.org/article/10.1088/2515-7639/acce6f</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/2515-7639/acce6f" target="_blank" >10.1088/2515-7639/acce6f</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh

  • Popis výsledku v původním jazyce

    Magnetic phase transition materials are relevant building blocks for developing green technologies such as magnetocaloric devices for solid-state refrigeration. Their integration into applications requires a good understanding and controllability of their properties at the micro- and nanoscale. Here, we present an optical microscopy study of the phase domains in FeRh across its antiferromagnetic-ferromagnetic phase transition. By tracking the phase-dependent optical reflectivity, we establish that phase domains have typical sizes of a few microns for relatively thick epitaxial films (200 nm), thus enabling visualization of domain nucleation, growth, and percolation processes in great detail. Phase domain growth preferentially occurs along the principal crystallographic axes of FeRh, which is a consequence of the elastic adaptation to both the substrate-induced stress and laterally heterogeneous strain distributions arising from the different unit cell volumes of the two coexisting phases. Furthermore, we demonstrate a magnetic-field-controlled directional growth of phase domains during both heating and cooling, which is predominantly linked to the local effect of magnetic dipolar fields created by the alignment of magnetic moments in the emerging (disappearing) FM phase fraction during heating (cooling). These findings highlight the importance of the magnetoelastic character of phase domains for enabling the local control of micro- and nanoscale phase separation patterns using magnetic fields or elastic stresses.

  • Název v anglickém jazyce

    Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh

  • Popis výsledku anglicky

    Magnetic phase transition materials are relevant building blocks for developing green technologies such as magnetocaloric devices for solid-state refrigeration. Their integration into applications requires a good understanding and controllability of their properties at the micro- and nanoscale. Here, we present an optical microscopy study of the phase domains in FeRh across its antiferromagnetic-ferromagnetic phase transition. By tracking the phase-dependent optical reflectivity, we establish that phase domains have typical sizes of a few microns for relatively thick epitaxial films (200 nm), thus enabling visualization of domain nucleation, growth, and percolation processes in great detail. Phase domain growth preferentially occurs along the principal crystallographic axes of FeRh, which is a consequence of the elastic adaptation to both the substrate-induced stress and laterally heterogeneous strain distributions arising from the different unit cell volumes of the two coexisting phases. Furthermore, we demonstrate a magnetic-field-controlled directional growth of phase domains during both heating and cooling, which is predominantly linked to the local effect of magnetic dipolar fields created by the alignment of magnetic moments in the emerging (disappearing) FM phase fraction during heating (cooling). These findings highlight the importance of the magnetoelastic character of phase domains for enabling the local control of micro- and nanoscale phase separation patterns using magnetic fields or elastic stresses.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Kvalitní interní granty VUT</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physics: Materials

  • ISSN

    2515-7639

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000985162700001

  • EID výsledku v databázi Scopus

    2-s2.0-85159699840