Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Observing high-k magnons with Mie-resonance-enhanced Brillouin light scattering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148484" target="_blank" >RIV/00216305:26620/23:PU148484 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s42005-023-01214-z" target="_blank" >https://www.nature.com/articles/s42005-023-01214-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s42005-023-01214-z" target="_blank" >10.1038/s42005-023-01214-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Observing high-k magnons with Mie-resonance-enhanced Brillouin light scattering

  • Popis výsledku v původním jazyce

    It is of fundamental interest to probe dynamics excitations such as magnons with nanoscale wavelengths in matter. Here, the authors experimentally observe magnons with high k-vectors using Brillouin light scattering microscopy with the use of dielectric nanoresonators, which opens the way for the future nanoscale magnonics research and probing materials with high-momentum photons. Local probing of dynamic excitations such as magnons and phonons in materials and nanostructures can bring new insights into their properties and functionalities. For example, in magnonics, many concepts and devices recently demonstrated at the macro- and microscale now need to be realized at the nanoscale. Brillouin light scattering (BLS) spectroscopy and microscopy has become a standard technique for spin wave characterization, and enabled many pioneering magnonic experiments. However, the conventional BLS cannot detect nanoscale waves due to its fundamental limit in maximum detectable quasiparticle momentum. Here we show that optically induced Mie resonances in nanoparticles can be used to extend the range of accessible quasiparticle's wavevectors beyond the BLS fundamental limit. These experiments involve the measurement of thermally excited as well as coherently excited high momentum magnons. Our findings demonstrate the capability of Mie-enhanced BLS and significantly extend the usability of BLS microscopy for magnonic and phononic research.

  • Název v anglickém jazyce

    Observing high-k magnons with Mie-resonance-enhanced Brillouin light scattering

  • Popis výsledku anglicky

    It is of fundamental interest to probe dynamics excitations such as magnons with nanoscale wavelengths in matter. Here, the authors experimentally observe magnons with high k-vectors using Brillouin light scattering microscopy with the use of dielectric nanoresonators, which opens the way for the future nanoscale magnonics research and probing materials with high-momentum photons. Local probing of dynamic excitations such as magnons and phonons in materials and nanostructures can bring new insights into their properties and functionalities. For example, in magnonics, many concepts and devices recently demonstrated at the macro- and microscale now need to be realized at the nanoscale. Brillouin light scattering (BLS) spectroscopy and microscopy has become a standard technique for spin wave characterization, and enabled many pioneering magnonic experiments. However, the conventional BLS cannot detect nanoscale waves due to its fundamental limit in maximum detectable quasiparticle momentum. Here we show that optically induced Mie resonances in nanoparticles can be used to extend the range of accessible quasiparticle's wavevectors beyond the BLS fundamental limit. These experiments involve the measurement of thermally excited as well as coherently excited high momentum magnons. Our findings demonstrate the capability of Mie-enhanced BLS and significantly extend the usability of BLS microscopy for magnonic and phononic research.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    COMMUNICATIONS PHYSICS

  • ISSN

    2399-3650

  • e-ISSN

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Kód UT WoS článku

    000984908900003

  • EID výsledku v databázi Scopus

    2-s2.0-85159003972