Deeply nonlinear excitation of self-normalized short spin waves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148969" target="_blank" >RIV/00216305:26620/23:PU148969 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.science.org/doi/10.1126/sciadv.adg4609" target="_blank" >https://www.science.org/doi/10.1126/sciadv.adg4609</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1126/sciadv.adg4609" target="_blank" >10.1126/sciadv.adg4609</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deeply nonlinear excitation of self-normalized short spin waves
Popis výsledku v původním jazyce
Spin waves are ideal candidates for wave-based computing, but the construction of magnetic circuits is blocked by a lack of an efficient mechanism to excite long-running exchange spin waves with normalized amplitudes. Here, we solve the challenge by exploiting a deeply nonlinear phenomenon for forward volume spin waves in 200-nm-wide nanoscale waveguides and validate our concept using microfocused Brillouin light scattering spectroscopy. An unprecedented nonlinear frequency shift of more than 2 GHz is achieved, corresponding to a magnetization precession angle of 55 & DEG; and enabling the excitation of spin waves with wavelengths down to 200 nm. The amplitude of the excited spin waves is constant and independent of the input microwave power due to the self-locking nonlinear shift, enabling robust adjustment of the spin-wave amplitudes in future on-chip magnonic integrated circuits.
Název v anglickém jazyce
Deeply nonlinear excitation of self-normalized short spin waves
Popis výsledku anglicky
Spin waves are ideal candidates for wave-based computing, but the construction of magnetic circuits is blocked by a lack of an efficient mechanism to excite long-running exchange spin waves with normalized amplitudes. Here, we solve the challenge by exploiting a deeply nonlinear phenomenon for forward volume spin waves in 200-nm-wide nanoscale waveguides and validate our concept using microfocused Brillouin light scattering spectroscopy. An unprecedented nonlinear frequency shift of more than 2 GHz is achieved, corresponding to a magnetization precession angle of 55 & DEG; and enabling the excitation of spin waves with wavelengths down to 200 nm. The amplitude of the excited spin waves is constant and independent of the input microwave power due to the self-locking nonlinear shift, enabling robust adjustment of the spin-wave amplitudes in future on-chip magnonic integrated circuits.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10700 - Other natural sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016948" target="_blank" >EF19_073/0016948: Kvalitní interní granty VUT</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science Advances
ISSN
2375-2548
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
32
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
„“-„“
Kód UT WoS článku
001046991700001
EID výsledku v databázi Scopus
2-s2.0-85167751860