Quantification of alloying elements in steel targets: The LIBS 2022 regression contest
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU149581" target="_blank" >RIV/00216305:26620/23:PU149581 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0584854723000976?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0584854723000976?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sab.2023.106710" target="_blank" >10.1016/j.sab.2023.106710</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantification of alloying elements in steel targets: The LIBS 2022 regression contest
Popis výsledku v původním jazyce
We present the results of the regression contest organized for the LIBS 2022 conference. While the motivation and design of the contest are briefly presented, the work focuses on the methodologies of the three bestperforming teams. The employed spectral preprocessing strategies, choice of regression models and its optimization are detailed for each team separately. The aim of the contest reflects the long-term challenges faced by quantitative laser-induced breakdown spectroscopy (LIBS) analysis. Thus, the contest was designed with the purpose of providing a transparent platform for comparing and evaluating the large range of data processing tools available in the LIBS literature. Namely, the contest consisted of the quantification of two major (Cr, Ni) and two minor (Mn, Mo) elements in 15 steel targets. For constructing an appropriate regression model, spectra of 42 targets were provided. The spectra were collected using a commercially available laboratory-based LIBS system and made publicly available. The contest lasted 53 days during which the teams did not receive feedback. In total, 21 teams participated out of which the three best-performing methodologies are presented here. A single linear partial least squares model and two artificial neural network regression models are presented. The corresponding feature selection strategies included emission line selection, spectral range selection, and automatized wavelength selection. Various spectral normalization strategies and data augmentation strategies are also presented.
Název v anglickém jazyce
Quantification of alloying elements in steel targets: The LIBS 2022 regression contest
Popis výsledku anglicky
We present the results of the regression contest organized for the LIBS 2022 conference. While the motivation and design of the contest are briefly presented, the work focuses on the methodologies of the three bestperforming teams. The employed spectral preprocessing strategies, choice of regression models and its optimization are detailed for each team separately. The aim of the contest reflects the long-term challenges faced by quantitative laser-induced breakdown spectroscopy (LIBS) analysis. Thus, the contest was designed with the purpose of providing a transparent platform for comparing and evaluating the large range of data processing tools available in the LIBS literature. Namely, the contest consisted of the quantification of two major (Cr, Ni) and two minor (Mn, Mo) elements in 15 steel targets. For constructing an appropriate regression model, spectra of 42 targets were provided. The spectra were collected using a commercially available laboratory-based LIBS system and made publicly available. The contest lasted 53 days during which the teams did not receive feedback. In total, 21 teams participated out of which the three best-performing methodologies are presented here. A single linear partial least squares model and two artificial neural network regression models are presented. The corresponding feature selection strategies included emission line selection, spectral range selection, and automatized wavelength selection. Various spectral normalization strategies and data augmentation strategies are also presented.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Spectrochimica Acta Part B
ISSN
0584-8547
e-ISSN
—
Svazek periodika
206
Číslo periodika v rámci svazku
106710
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
„“-„“
Kód UT WoS článku
001055346600001
EID výsledku v databázi Scopus
2-s2.0-85161017704