Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150071" target="_blank" >RIV/00216305:26620/23:PU150071 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/23:10252772
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0926337323002758?via%3Dihub" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0926337323002758?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apcatb.2023.122632" target="_blank" >10.1016/j.apcatb.2023.122632</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia
Popis výsledku v původním jazyce
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to remedying the environmental pollution from nitrate, and simultaneously a sustainable alternative to traditional Haber-Bosch process especially for decentralized ammonia production. Here, we firstly explore the electrocatalytic activity of two 3D printed carbon frameworks consisting of 0-dimentional (0D) carbon black and 1-dimentional (1D) carbon nanotubes towards cost-efficient electrocatalysts for NO3RR. Different from the electrocatalytic inert properties of 0D carbon framework, 1D carbon framework exhibits the electrocatalytic activity for NO3RR with a Faradaic efficiency of more than 50% at - 1.21 V vs. RHE. Control experiments suggest that such activity originates from the synergistic electrocatalytic contributions between intrinsic surface features of carbon nanotubes and metallic impurities. Since the content and distribution of these metallic impurities are unpredictable, an ultrathin deposit of electrocatalytic manganese oxides is further deposited by atomic layer deposition on 1D carbon framework to ensure well defined surfaces for effective NO3RR. The proposed strategy by integrating 3D printing of conductive carbon framework with atomic layer deposition of an electrocatalytic layer provides a feasible electrode fabrication for electrochemical NO3RR and shows a promising prospect in the electrocatalytic field.
Název v anglickém jazyce
Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia
Popis výsledku anglicky
Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to remedying the environmental pollution from nitrate, and simultaneously a sustainable alternative to traditional Haber-Bosch process especially for decentralized ammonia production. Here, we firstly explore the electrocatalytic activity of two 3D printed carbon frameworks consisting of 0-dimentional (0D) carbon black and 1-dimentional (1D) carbon nanotubes towards cost-efficient electrocatalysts for NO3RR. Different from the electrocatalytic inert properties of 0D carbon framework, 1D carbon framework exhibits the electrocatalytic activity for NO3RR with a Faradaic efficiency of more than 50% at - 1.21 V vs. RHE. Control experiments suggest that such activity originates from the synergistic electrocatalytic contributions between intrinsic surface features of carbon nanotubes and metallic impurities. Since the content and distribution of these metallic impurities are unpredictable, an ultrathin deposit of electrocatalytic manganese oxides is further deposited by atomic layer deposition on 1D carbon framework to ensure well defined surfaces for effective NO3RR. The proposed strategy by integrating 3D printing of conductive carbon framework with atomic layer deposition of an electrocatalytic layer provides a feasible electrode fabrication for electrochemical NO3RR and shows a promising prospect in the electrocatalytic field.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26896X" target="_blank" >GX19-26896X: Elektrochemie 2D Nanomateriálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Catalysis B: Environmental
ISSN
0926-3373
e-ISSN
1873-3883
Svazek periodika
330
Číslo periodika v rámci svazku
122632
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
„“-„“
Kód UT WoS článku
001054860700001
EID výsledku v databázi Scopus
2-s2.0-85150917482