Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150071" target="_blank" >RIV/00216305:26620/23:PU150071 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27240/23:10252772

  • Výsledek na webu

    <a href="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0926337323002758?via%3Dihub" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0926337323002758?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apcatb.2023.122632" target="_blank" >10.1016/j.apcatb.2023.122632</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia

  • Popis výsledku v původním jazyce

    Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to remedying the environmental pollution from nitrate, and simultaneously a sustainable alternative to traditional Haber-Bosch process especially for decentralized ammonia production. Here, we firstly explore the electrocatalytic activity of two 3D printed carbon frameworks consisting of 0-dimentional (0D) carbon black and 1-dimentional (1D) carbon nanotubes towards cost-efficient electrocatalysts for NO3RR. Different from the electrocatalytic inert properties of 0D carbon framework, 1D carbon framework exhibits the electrocatalytic activity for NO3RR with a Faradaic efficiency of more than 50% at - 1.21 V vs. RHE. Control experiments suggest that such activity originates from the synergistic electrocatalytic contributions between intrinsic surface features of carbon nanotubes and metallic impurities. Since the content and distribution of these metallic impurities are unpredictable, an ultrathin deposit of electrocatalytic manganese oxides is further deposited by atomic layer deposition on 1D carbon framework to ensure well defined surfaces for effective NO3RR. The proposed strategy by integrating 3D printing of conductive carbon framework with atomic layer deposition of an electrocatalytic layer provides a feasible electrode fabrication for electrochemical NO3RR and shows a promising prospect in the electrocatalytic field.

  • Název v anglickém jazyce

    Ultrathin manganese oxides enhance the electrocatalytic properties of 3D printed carbon catalysts for electrochemical nitrate reduction to ammonia

  • Popis výsledku anglicky

    Electrochemical nitrate reduction reaction (NO3RR) is a promising approach to remedying the environmental pollution from nitrate, and simultaneously a sustainable alternative to traditional Haber-Bosch process especially for decentralized ammonia production. Here, we firstly explore the electrocatalytic activity of two 3D printed carbon frameworks consisting of 0-dimentional (0D) carbon black and 1-dimentional (1D) carbon nanotubes towards cost-efficient electrocatalysts for NO3RR. Different from the electrocatalytic inert properties of 0D carbon framework, 1D carbon framework exhibits the electrocatalytic activity for NO3RR with a Faradaic efficiency of more than 50% at - 1.21 V vs. RHE. Control experiments suggest that such activity originates from the synergistic electrocatalytic contributions between intrinsic surface features of carbon nanotubes and metallic impurities. Since the content and distribution of these metallic impurities are unpredictable, an ultrathin deposit of electrocatalytic manganese oxides is further deposited by atomic layer deposition on 1D carbon framework to ensure well defined surfaces for effective NO3RR. The proposed strategy by integrating 3D printing of conductive carbon framework with atomic layer deposition of an electrocatalytic layer provides a feasible electrode fabrication for electrochemical NO3RR and shows a promising prospect in the electrocatalytic field.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26896X" target="_blank" >GX19-26896X: Elektrochemie 2D Nanomateriálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Catalysis B: Environmental

  • ISSN

    0926-3373

  • e-ISSN

    1873-3883

  • Svazek periodika

    330

  • Číslo periodika v rámci svazku

    122632

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    „“-„“

  • Kód UT WoS článku

    001054860700001

  • EID výsledku v databázi Scopus

    2-s2.0-85150917482